![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
Mathematics has long suffered in the public eye through portrayals of mathematicians as socially inept geniuses devoted to an arcane discipline. In this book, Philip J. Davis addresses this image through a question-and-answer dialogue that lays to rest many of the misnomers and misunderstandings of mathematical study. He answers these questions and more: What is Mathematics? Why is mathematics difficult, and why do I spontaneously react negatively when I hear the word? Davis demonstrates how mathematics surrounds, imbues, and maintains our everyday lives: the digitization and automation of processes like pumping gas, withdrawing cash, and buying groceries are all fueled by mathematics. He takes the reader through a point-by-point explanation of many frequently asked questions about mathematics, gently introducing this Handmaiden of Science and telling you everything you've ever wanted to know about her.
This volume presents interviews that have been conducted from the 1980s to the present with important scholars of social choice and welfare theory. Starting with a brief history of social choice and welfare theory written by the book editors, it features 15 conversations with four Nobel Laureates and other key scholars in the discipline. The volume is divided into two parts. The first part presents four conversations with the founding fathers of modern social choice and welfare theory: Kenneth Arrow, John Harsanyi, Paul Samuelson, and Amartya Sen. The second part includes conversations with scholars who made important contributions to the discipline from the early 1970s onwards. This book will appeal to anyone interested in the history of economics, and the history of social choice and welfare theory in particular.
This volume is a collection of essays in honour of Professor Mohammad Ardeshir. It examines topics which, in one way or another, are connected to the various aspects of his multidisciplinary research interests. Based on this criterion, the book is divided into three general categories. The first category includes papers on non-classical logics, including intuitionistic logic, constructive logic, basic logic, and substructural logic. The second category is made up of papers discussing issues in the contemporary philosophy of mathematics and logic. The third category contains papers on Avicenna's logic and philosophy. Mohammad Ardeshir is a full professor of mathematical logic at the Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, where he has taught generations of students for around a quarter century. Mohammad Ardeshir is known in the first place for his prominent works in basic logic and constructive mathematics. His areas of interest are however much broader and include topics in intuitionistic philosophy of mathematics and Arabic philosophy of logic and mathematics. In addition to numerous research articles in leading international journals, Ardeshir is the author of a highly praised Persian textbook in mathematical logic. Partly through his writings and translations, the school of mathematical intuitionism was introduced to the Iranian academic community.
This book investigates the process of care in mathematics teaching. The author proposes transformative educational spaces in which learning mathematics, rather than consisting of a repetitive grind of exercises and facts, can become a part of learner identity. This book describes examples of mathematics teachings in a wide range of contexts and pedagogies, coordinated to identify common features where care for mathematical learning and thinking is combined with care for learners. Along with detailing caring mathematics education practices in alternative spaces, the author demonstrates similar practices alive even with the current mainstream spaces of acquisition and performance. Care is integrated through listening, and developing responsive and trusting relationships. It will be of interest to scholars of mathematics education, as well as pre-service and in-service teachers and teacher educators.
This handbook features essays written by both literary scholars and mathematicians that examine multiple facets of the connections between literature and mathematics. These connections range from mathematics and poetic meter to mathematics and modernism to mathematics as literature. Some chapters focus on a single author, such as mathematics and Ezra Pound, Gertrude Stein, or Charles Dickens, while others consider a mathematical topic common to two or more authors, such as squaring the circle, chaos theory, Newton's calculus, or stochastic processes. With appeal for scholars and students in literature, mathematics, cultural history, and history of mathematics, this important volume aims to introduce the range, fertility, and complexity of the connections between mathematics, literature, and literary theory. Chapter 1 is available open access under a Creative Commons Attribution 4.0 International License via [link.springer.com|http://link.springer.com/].
This textbook offers a detailed introduction to the methodology and applications of sequent calculi in propositional logic. Unlike other texts concerned with proof theory, emphasis is placed on illustrating how to use sequent calculi to prove a wide range of metatheoretical results. The presentation is elementary and self-contained, with all technical details both formally stated and also informally explained. Numerous proofs are worked through to demonstrate methods of proving important results, such as the cut-elimination theorem, completeness, decidability, and interpolation. Other proofs are presented with portions left as exercises for readers, allowing them to practice techniques of sequent calculus. After a brief introduction to classical propositional logic, the text explores three variants of sequent calculus and their features and applications. The remaining chapters then show how sequent calculi can be extended, modified, and applied to non-classical logics, including modal, intuitionistic, substructural, and many-valued logics. Sequents and Trees is suitable for graduate and advanced undergraduate students in logic taking courses on proof theory and its application to non-classical logics. It will also be of interest to researchers in computer science and philosophers.
Category theory is a branch of abstract algebra with incredibly
diverse applications. This text and reference book is aimed not
only at mathematicians, but also researchers and students of
computer science, logic, linguistics, cognitive science,
philosophy, and any of the other fields in which the ideas are
being applied. Containing clear definitions of the essential
concepts, illuminated with numerous accessible examples, and
providing full proofs of all important propositions and theorems,
this book aims to make the basic ideas, theorems, and methods of
category theory understandable to this broad readership.
This monograph examines the private annotations that Ludwig Wittgenstein made to his copy of G.H. Hardy's classic textbook, A Course of Pure Mathematics. Complete with actual images of the annotations, it gives readers a more complete picture of Wittgenstein's remarks on irrational numbers, which have only been published in an excerpted form and, as a result, have often been unjustly criticized. The authors first establish the context behind the annotations and discuss the historical role of Hardy's textbook. They then go on to outline Wittgenstein's non-extensionalist point of view on real numbers, assessing his manuscripts and published remarks and discussing attitudes in play in the philosophy of mathematics since Dedekind. Next, coverage focuses on the annotations themselves. The discussion encompasses irrational numbers, the law of excluded middle in mathematics and the notion of an "improper picture," the continuum of real numbers, and Wittgenstein's attitude toward functions and limits.
This monograph uses the concept and category of "event" in the study of mathematics as it emerges from an interaction between levels of cognition, from the bodily experiences to symbolism. It is subdivided into three parts.The first moves from a general characterization of the classical approach to mathematical cognition and mind toward laying the foundations for a view on the mathematical mind that differs from going approaches in placing primacy on events.The second articulates some common phenomena-mathematical thought, mathematical sign, mathematical form, mathematical reason and its development, and affect in mathematics-in new ways that are based on the previously developed ontology of events. The final part has more encompassing phenomena as its content, most prominently the thinking body of mathematics, the experience in and of mathematics, and the relationship between experience and mind. The volume is well-suited for anyone with a broad interest in educational theory and/or social development, or with a broad background in psychology.
Kit Fine develops a Fregean theory of abstraction, and suggests that it may yield a new philosophical foundation for mathematics, one that can account for both our reference to various mathematical objects and our knowledge of various mathematical truths. The Limits of Abstraction breaks new ground both technically and philosophically, and will be essential reading for all who work on the philosophy of mathematics.
A History of Mathematics: From Mesopotamia to Modernity covers the evolution of mathematics through time and across the major Eastern and Western civilizations. It begins in Babylon, then describes the trials and tribulations of the Greek mathematicians. The important, and often neglected, influence of both Chinese and Islamic mathematics is covered in detail, placing the description of early Western mathematics in a global context. The book concludes with modern mathematics, covering recent developments such as the advent of the computer, chaos theory, topology, mathematical physics, and the solution of Fermat's Last Theorem. Containing more than 100 illustrations and figures, this text, aimed at advanced undergraduates and postgraduates, addresses the methods and challenges associated with studying the history of mathematics. The reader is introduced to the leading figures in the history of mathematics (including Archimedes, Ptolemy, Qin Jiushao, al-Kashi, al-Khwarizmi, Galileo, Newton, Leibniz, Helmholtz, Hilbert, Alan Turing, and Andrew Wiles) and their fields. An extensive bibliography with cross-references to key texts will provide invaluable resource to students and exercises (with solutions) will stretch the more advanced reader.
When a doctor tells you there's a one percent chance that an operation will result in your death, or a scientist claims that his theory is probably true, what exactly does that mean? Understanding probability is clearly very important, if we are to make good theoretical and practical choices. In this engaging and highly accessible introduction to the philosophy of probability, Darrell Rowbottom takes the reader on a journey through all the major interpretations of probability, with reference to real-world situations. In lucid prose, he explores the many fallacies of probabilistic reasoning, such as the 'gambler's fallacy' and the 'inverse fallacy', and shows how we can avoid falling into these traps by using the interpretations presented. He also illustrates the relevance of the interpretation of probability across disciplinary boundaries, by examining which interpretations of probability are appropriate in diverse areas such as quantum mechanics, game theory, and genetics. Using entertaining dialogues to draw out the key issues at stake, this unique book will appeal to students and scholars across philosophy, the social sciences, and the natural sciences.
Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which Principia Mathematica provided the detailed proof, and introduced the work of Frege to a wider audience. In addition to the new introduction by John Slater, this edition contains Russell's introduction to the 1937 edition in which he defends his position against his formalist and intuitionist critics.
Are there objects that are "thin" in the sense that not very much is required for their existence? Frege famously thought so. He claimed that the equinumerosity of the knives and the forks suffices for there to be objects such as the number of knives and the number of forks, and for these objects to be identical. The idea of thin objects holds great philosophical promise but has proved hard to explicate. Oystein Linnebo aims to do so by drawing on some Fregean ideas. First, to be an object is to be a possible referent of a singular term. Second, singular reference can be achieved by providing a criterion of identity for the would-be referent. The second idea enables a form of easy reference and thus, via the first idea, also a form of easy being. Paradox is avoided by imposing a predicativity restriction on the criteria of identity. But the abstraction based on a criterion of identity may result in an expanded domain. By iterating such expansions, a powerful account of dynamic abstraction is developed. The result is a distinctive approach to ontology. Abstract objects such as numbers and sets are demystified and allowed to exist alongside more familiar physical objects. And Linnebo also offers a novel approach to set theory which takes seriously the idea that sets are "formed" successively.
Mathieu Marion offers a careful, historically informed study of Wittgenstein's philosophy of mathematics. This area of his work has frequently been undervalued by Wittgenstein specialists and philosophers of mathematics alike; but the surprising fact that he wrote more on this subject than any other indicates its centrality in his thought. Marion traces the development of Wittgenstein's thinking from the 1920s through to the 1950s, in the context of the mathematical and philosophical work of the times, to make coherent sense of ideas that have too often been misunderstood because they have been presented in a disjointed and incomplete way. He shows that study of Wittgenstein's writings on mathematics is essential to a proper understanding of his philosophy, and also that it can do much to illuminate current debates about the foundations of mathematics.
In our hyper-modern world, we are bombarded with more facts, stats and information than ever before. So, what can we grasp hold of to make sense of it all? Oliver Johnson reveals how mathematical thinking can help us understand the myriad data all around us. From the exponential growth of viruses to social media filter-bubbles; from share price fluctuations to the cost of living; from the datafication of our sports pages to quantifying climate change. Not to mention the things much closer to home: ever wondered when the best time is to leave a party? What are the chances of rain ruining your barbecue this weekend? How about which queue is the best to join in the supermarket? Journeying through three sections - Randomness, Structure, and Information - we meet a host of brilliant minds, such Alan Turing, Enrico Fermi and Claude Shannon, and are equipped with the tools to cut through the noise all around us - from the Law of Large Numbers to Entropy to Brownian Motion. Lucid, surprising, and endlessly entertaining, Numbercrunch equips you with a definitive mathematician's toolkit to make sense of your world.
A fascinating account of the breakthrough ideas that transformed probability and statistics In the sixteenth and seventeenth centuries, gamblers and mathematicians transformed the idea of chance from a mystery into the discipline of probability, setting the stage for a series of breakthroughs that enabled or transformed innumerable fields, from gambling, mathematics, statistics, economics, and finance to physics and computer science. This book tells the story of ten great ideas about chance and the thinkers who developed them. Complete with a brief probability refresher, Ten Great Ideas about Chance is certain to be a hit with anyone who wants to understand the secrets of probability and how they were discovered.
Numbers and other mathematical objects are exceptional in having no locations in space or time and no causes or effects in the physical world. This makes it difficult to account for the possibility of mathematical knowledge, leading many philosophers to embrace nominalism, the doctrine that there are no abstract entitles, and to embark on ambitious projects for interpreting mathematics so as to preserve the subject while eliminating its objects. A Subject With No Object cuts through a host of technicalities that have obscured previous discussions of these projects, and presents clear, concise accounts, with minimal prerequisites, of a dozen strategies for nominalistic interpretation of mathematics, thus equipping the reader to evaluate each and to compare different ones. The authors also offer critical discussion, rare in the literature, of the aims and claims of nominalistic interpretation, suggesting that it is significant in a very different way from that usually assumed.
Metamathematics and the Philosophical Tradition is the first work to explore in such historical depth the relationship between fundamental philosophical quandaries regarding self-reference and meta-mathematical notions of consistency and incompleteness. Using the insights of twentieth-century logicians from Goedel through Hilbert and their successors, this volume revisits the writings of Aristotle, the ancient skeptics, Anselm, and enlightenment and seventeenth and eighteenth century philosophers Leibniz, Berkeley, Hume, Pascal, Descartes, and Kant to identify ways in which these both encode and evade problems of a priori definition and self-reference. The final chapters critique and extend more recent insights of late 20th-century logicians and quantum physicists, and offer new applications of the completeness theorem as a means of exploring "metatheoretical ascent" and the limitations of scientific certainty. Broadly syncretic in range, Metamathematics and the Philosophical Tradition addresses central and recurring problems within epistemology. The volume's elegant, condensed writing style renders accessible its wealth of citations and allusions from varied traditions and in several languages. Its arguments will be of special interest to historians and philosophers of science and mathematics, particularly scholars of classical skepticism, the Enlightenment, Kant, ethics, and mathematical logic.
A comprehensive collection of historical readings in the philosophy of mathematics and a selection of influential contemporary work, this much-needed introduction reveals the rich history of the subject. An Historical Introduction to the Philosophy of Mathematics: A Reader brings together an impressive collection of primary sources from ancient and modern philosophy. Arranged chronologically and featuring introductory overviews explaining technical terms, this accessible reader is easy-to-follow and unrivaled in its historical scope. With selections from key thinkers such as Plato, Aristotle, Descartes, Hume and Kant, it connects the major ideas of the ancients with contemporary thinkers. A selection of recent texts from philosophers including Quine, Putnam, Field and Maddy offering insights into the current state of the discipline clearly illustrates the development of the subject. Presenting historical background essential to understanding contemporary trends and a survey of recent work, An Historical Introduction to the Philosophy of Mathematics: A Reader is required reading for undergraduates and graduate students studying the philosophy of mathematics and an invaluable source book for working researchers.
This book offers a comprehensive critical survey of issues of historical interpretation and evaluation in Bertrand Russell's 1918 logical atomism lectures and logical atomism itself. These lectures record the culmination of Russell's thought in response to discussions with Wittgenstein on the nature of judgement and philosophy of logic and with Moore and other philosophical realists about epistemology and ontological atomism, and to Whitehead and Russell’s novel extension of revolutionary nineteenth-century work in mathematics and logic.  Russell's logical atomism lectures have had a lasting impact on analytic philosophy and on Russell's contemporaries including Carnap, Ramsey, Stebbing, and Wittgenstein. Comprised of 14 original essays, this book will demonstrate how the direct and indirect influence of these lectures thus runs deep and wide.
This collection documents the work of the Hyperuniverse Project which is a new approach to set-theoretic truth based on justifiable principles and which leads to the resolution of many questions independent from ZFC. The contributions give an overview of the program, illustrate its mathematical content and implications, and also discuss its philosophical assumptions. It will thus be of wide appeal among mathematicians and philosophers with an interest in the foundations of set theory. The Hyperuniverse Project was supported by the John Templeton Foundation from January 2013 until September 2015 |
![]() ![]() You may like...
Too Big to Fail - The Hazards of Bank…
Gary H. Stern, Ron J Feldman
Paperback
R633
Discovery Miles 6 330
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
![]()
|