![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
Those inquiring into the nature of mind have long been interested in the foundations of mathematics and vice versa. A better understanding of mathematical thought should clarify the conceptual foundations of mathematics, and a deeper grasp of the latter should in turn illuminate the powers of mind through which mathematics is made available to us. This volume's contributors have taken the link between conceptions of mind and mathematics as their topic, exploring and probing it from different perspectives.
First published in 2005. This study seeks to identify the specific mistakes that critics were alluding to in their passing asides on Wittgenstein's failure to grasp the mechanics of Godel's second incompleteness theorem. It also includes an understanding of his attack on meta-mathematics and Hilbert's Programme.
This book offers a historical explanation of important philosophical problems in logic and mathematics, which have been neglected by the official history of modern logic. It offers extensive information on Gottlob Frege's logic, discussing which aspects of his logic can be considered truly innovative in its revolution against the Aristotelian logic. It presents the work of Hilbert and his associates and followers with the aim of understanding the revolutionary change in the axiomatic method. Moreover, it offers useful tools to understand Tarski's and Goedel's work, explaining why the problems they discussed are still unsolved. Finally, the book reports on some of the most influential positions in contemporary philosophy of mathematics, i.e., Maddy's mathematical naturalism and Shapiro's mathematical structuralism. Last but not least, the book introduces Biancani's Aristotelian philosophy of mathematics as this is considered important to understand current philosophical issue in the applications of mathematics. One of the main purposes of the book is to stimulate readers to reconsider the Aristotelian position, which disappeared almost completely from the scene in logic and mathematics in the early twentieth century.
This monograph presents a groundbreaking scholarly treatment of the German mathematician Jost Burgi's original work on logarithms, Arithmetische und Geometrische Progress Tabulen. It provides the first-ever English translation of Burgi's text and illuminates his role in the development of the conception of logarithms, for which John Napier is traditionally given priority. High-resolution scans of each page of the his handwritten text are reproduced for the reader and as a means of preserving an important work for which there are very few surviving copies. The book begins with a brief biography of Burgi to familiarize readers with his life and work, as well as to offer an historical context in which to explore his contributions. The second chapter then describes the extant copies of the Arithmetische und Geometrische Progress Tabulen, with a detailed description of the copy that is the focus of this book, the 1620 "Graz manuscript". A complete facsimile of the text is included in the next chapter, along with a corresponding transcription and an English translation; a transcription of a second version of the manuscript (the "Gdansk manuscript") is included alongside that of the Graz edition so that readers can easily and closely examine the differences between the two. The final chapter considers two important questions about Burgi's work, such as who was the copyist of the Graz manuscript and what the relationship is between the Graz and Gdansk versions. Appendices are also included that contain a timeline of Burgi's life, the underlying concept of Napier's construction of logarithms, and scans of all 58 sheets of the tables from Burgi's text. Anyone with an appreciation for the history of mathematics will find this book to be an insightful and interesting look at an important and often overlooked work. It will also be a valuable resource for undergraduates taking courses in the history of mathematics, researchers of the history of mathematics, and professors of mathematics education who wish to incorporate historical context into their teaching.
We are all captivated and puzzled by the infinite, in its many varied guises; by the endlessness of space and time; by the thought that between any two points in space, however close, there is always another; by the fact that numbers go on forever; and by the idea of an all-knowing, all-powerful God. In this acclaimed introduction to the infinite, A. W. Moore takes us on a journey back to early Greek thought about the infinite, from its inception to Aristotle. He then examines medieval and early modern conceptions of the infinite, including a brief history of the calculus, before turning to Kant and post-Kantian ideas. He also gives an account of Cantor's remarkable discovery that some infinities are bigger than others. In the second part of the book, Moore develops his own views, drawing on technical advances in the mathematics of the infinite, including the celebrated theorems of Skolem and Goedel, and deriving inspiration from Wittgenstein. He concludes this part with a discussion of death and human finitude. For this third edition Moore has added a new part, 'Infinity superseded', which contains two new chapters refining his own ideas through a re-examination of the ideas of Spinoza, Hegel, and Nietzsche. This new part is heavily influenced by the work of Deleuze. Also new for the third edition are: a technical appendix on still unresolved questions about different infinite sizes; an expanded glossary; and updated references and further reading. The Infinite, Third Edition is ideal reading for anyone interested in an engaging and historically informed account of this fascinating topic, whether from a philosophical point of view, a mathematical point of view, or a religious point of view.
This book contains more than 15 essays that explore issues in truth, existence, and explanation. It features cutting-edge research in the philosophy of mathematics and logic. Renowned philosophers, mathematicians, and younger scholars provide an insightful contribution to the lively debate in this interdisciplinary field of inquiry. The essays look at realism vs. anti-realism as well as inflationary vs. deflationary theories of truth. The contributors also consider mathematical fictionalism, structuralism, the nature and role of axioms, constructive existence, and generality. In addition, coverage also looks at the explanatory role of mathematics and the philosophical relevance of mathematical explanation. The book will appeal to a broad mathematical and philosophical audience. It contains work from FilMat, the Italian Network for the Philosophy of Mathematics. These papers collected here were also presented at their second international conference, held at the University of Chieti-Pescara, May 2016.
What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual accessibility and correct representation of the issues. Friend examines the standard theories of mathematics - Platonism, realism, logicism, formalism, constructivism and structuralism - as well as some less standard theories such as psychologism, fictionalism and Meinongian philosophy of mathematics. In each case Friend explains what characterises the position and where the divisions between them lie, including some of the arguments in favour and against each. This book also explores particular questions that occupy present-day philosophers and mathematicians such as the problem of infinity, mathematical intuition and the relationship, if any, between the philosophy of mathematics and the practice of mathematics. Taking in the canonical ideas of Aristotle, Kant, Frege and Whitehead and Russell as well as the challenging and innovative work of recent philosophers like Benacerraf, Hellman, Maddy and Shapiro, Friend provides a balanced and accessible introduction suitable for upper-level undergraduate courses and the non-specialist.
What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual accessibility and correct representation of the issues. Friend examines the standard theories of mathematics - Platonism, realism, logicism, formalism, constructivism and structuralism - as well as some less standard theories such as psychologism, fictionalism and Meinongian philosophy of mathematics. In each case Friend explains what characterises the position and where the divisions between them lie, including some of the arguments in favour and against each. This book also explores particular questions that occupy present-day philosophers and mathematicians such as the problem of infinity, mathematical intuition and the relationship, if any, between the philosophy of mathematics and the practice of mathematics. Taking in the canonical ideas of Aristotle, Kant, Frege and Whitehead and Russell as well as the challenging and innovative work of recent philosophers like Benacerraf, Hellman, Maddy and Shapiro, Friend provides a balanced and accessible introduction suitable for upper-level undergraduate courses and the non-specialist.
Mathematics has long suffered in the public eye through portrayals of mathematicians as socially inept geniuses devoted to an arcane discipline. In this book, Philip J. Davis addresses this image through a question-and-answer dialogue that lays to rest many of the misnomers and misunderstandings of mathematical study. He answers these questions and more: What is Mathematics? Why is mathematics difficult, and why do I spontaneously react negatively when I hear the word? Davis demonstrates how mathematics surrounds, imbues, and maintains our everyday lives: the digitization and automation of processes like pumping gas, withdrawing cash, and buying groceries are all fueled by mathematics. He takes the reader through a point-by-point explanation of many frequently asked questions about mathematics, gently introducing this Handmaiden of Science and telling you everything you've ever wanted to know about her.
George Spencer Brown, a polymath and author of Laws of Form, brought together mathematics, electronics, engineering and philosophy to form an unlikely bond. This book investigates Design with NOR, the title of the yet unpublished 1961 typescript by Spencer Brown. The typescript formed through the author's experiences as technical engineer and developer of a new form of switching algebra for Mullard Equipment Ltd., a British manufacturer of electronic components, and is published here for the first time. Related essays contextualise the typescript drawing on a variety backgrounds from mathematics and engineering to philosophy and sociology, and thus invite readers to a reverse-engineering of both the form and its laws.
After completing his famous ""Foundations of Analysis"" (See 'AMS Chelsea Publishing, Volume 79.H' for the English Edition and 'AMS Chelsea Publishing, Volume 141' for the German Edition, ""Grundlagen der Analysis""), Landau turned his attention to this book on calculus. The approach is that of an unrepentant analyst, with an emphasis on functions rather than on geometric or physical applications. The book is another example of Landau's formidable skill as an expositor. It is a masterpiece of rigor and clarity.
Mathematical platonism is the view that mathematical statements are true of real mathematical objects like numbers, shapes, and sets. One central problem with platonism is that numbers, shapes, sets, and the like are not perceivable by our senses. In contemporary philosophy, the most common defense of platonism uses what is known as the indispensability argument. According to the indispensabilist, we can know about mathematics because mathematics is essential to science. Platonism is among the most persistent philosophical views. Our mathematical beliefs are among our most entrenched. They have survived the demise of millennia of failed scientific theories. Once established, mathematical theories are rarely rejected, and never for reasons of their inapplicability to empirical science. Autonomy Platonism and the Indispensability Argument is a defense of an alternative to indispensability platonism. The autonomy platonist believes that mathematics is independent of empirical science: there is purely mathematical evidence for purely mathematical theories which are even more compelling to believe than empirical science. Russell Marcus begins by contrasting autonomy platonism and indispensability platonism. He then argues against a variety of indispensability arguments in the first half of the book. In the latter half, he defends a new approach to a traditional platonistic view, one which includes appeals to a priori but fallible methods of belief acquisition, including mathematical intuition, and a natural adoption of ordinary mathematical methods. In the end, Marcus defends his intuition-based autonomy platonism against charges that the autonomy of mathematics is viciously circular. This book will be useful to researchers, graduate students, and advanced undergraduates with interests in the philosophy of mathematics or in the connection between science and mathematics.
An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and Doggerel to Chromatic, Electrostatic, and Psychedelic. With a rare blend of humor and scholarly aplomb, Philip Ording weaves these variations into an accessible and wide-ranging narrative on the nature and practice of mathematics. Inspired by the experiments of the Paris-based writing group known as the Oulipo-whose members included Raymond Queneau, Italo Calvino, and Marcel Duchamp-Ording explores new ways to examine the aesthetic possibilities of mathematical activity. 99 Variations on a Proof is a mathematical take on Queneau's Exercises in Style, a collection of 99 retellings of the same story, and it draws unexpected connections to everything from mysticism and technology to architecture and sign language. Through diagrams, found material, and other imagery, Ording illustrates the flexibility and creative potential of mathematics despite its reputation for precision and rigor. Readers will gain not only a bird's-eye view of the discipline and its major branches but also new insights into its historical, philosophical, and cultural nuances. Readers, no matter their level of expertise, will discover in these proofs and accompanying commentary surprising new aspects of the mathematical landscape.
In this exciting new collection, a distinguished international group of philosophers contribute new essays on central issues in philosophy of language and logic, in honor of Michael Dummett, one of the most influential philosophers of the late twentieth century. The essays are focused on areas particularly associated with Professor Dummett. Five are contributions to the philosophy of language, addressing in particular the nature of truth and meaning and the relation between language and thought. Two contributors discuss time, in particular the reality of the past. The last four essays focus on Frege and the philosophy of mathematics. The volume represents some of the best work in contemporary analytical philosophy.
Attempts to understand various aspects of the empirical world often rely on modelling processes that involve a reconstruction of systems under investigation. Typically the reconstruction uses mathematical frameworks like gauge theory and renormalization group methods, but more recently simulations also have become an indispensable tool for investigation. This book is a philosophical examination of techniques and assumptions related to modelling and simulation with the goal of showing how these abstract descriptions can contribute to our understanding of the physical world. Particular issues include the role of fictional models in science, how mathematical formalisms can yield physical information, and how we should approach the use of inconsistent models for specific types of systems. It also addresses the role of simulation, specifically the conditions under which simulation can be seen as a technique for measurement, replacing more traditional experimental approaches. Inherent worries about the legitimacy of simulation "knowledge " are also addressed, including an analysis of verification and validation and the role of simulation data in the search for the Higgs boson. In light of the significant role played by simulation in the Large Hadron Collider experiments, it is argued that the traditional distinction between simulation and experiment is no longer applicable in some contexts of modern science. Consequently, a re-evaluation of the way and extent to which simulation delivers empirical knowledge is required. "This is a, lively, stimulating, and important book by one of the main scholars contributing to current topics and debates in our field. It will be a major resource for philosophers of science, their students, scientists interested in examining scientific practice, and the general scientifically literate public. "-Bas van Fraassen, Distinguished Professor of Philosophy, San Francisco State University
One of the only volumes that brings the humanities, social sciences and even the natural sciences under one remit to look at how they can be researched in an integrated and useful way, with policy and real world implications in terms of how we relate in and to the world. Interdisciplinarity and Transdisciplinarity have been around for a long time, but as as we move through a digital age they are becoming more and more important and interesting to the scholarly community and beyond. There is nothing on the market that pulls all of these subjects across disciplines together and works out a framework to construct the analysis in a way that asks and answers useful questions.
When a doctor tells you there's a one percent chance that an operation will result in your death, or a scientist claims that his theory is probably true, what exactly does that mean? Understanding probability is clearly very important, if we are to make good theoretical and practical choices. In this engaging and highly accessible introduction to the philosophy of probability, Darrell Rowbottom takes the reader on a journey through all the major interpretations of probability, with reference to real-world situations. In lucid prose, he explores the many fallacies of probabilistic reasoning, such as the 'gambler's fallacy' and the 'inverse fallacy', and shows how we can avoid falling into these traps by using the interpretations presented. He also illustrates the relevance of the interpretation of probability across disciplinary boundaries, by examining which interpretations of probability are appropriate in diverse areas such as quantum mechanics, game theory, and genetics. Using entertaining dialogues to draw out the key issues at stake, this unique book will appeal to students and scholars across philosophy, the social sciences, and the natural sciences.
Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which Principia Mathematica provided the detailed proof, and introduced the work of Frege to a wider audience. In addition to the new introduction by John Slater, this edition contains Russell's introduction to the 1937 edition in which he defends his position against his formalist and intuitionist critics.
This is the first of two volumes on belief and counterfactuals. It provides an introduction to ranking theory, which is a powerful formal theory with a broad range of applications in different areas of analytic philosophy. Drawing on formal logic, ranking theory can account for degrees of belief, which can change with the introduction of new information. In Belief and Counterfactuals, Franz Huber applies ranking theory and belief revision to metaphysics and epistemology. Though based on his technical writings, the volume is intended to be as accessible as possible, in order to fully present the utility of ranking theory to a wide range of philosophical issues. The volume contains several novel arguments, accounts, and applications-including the consistency argument for ranking theory, the conditional theory of conditional belief, as well as solutions to the problems of conceptual belief change, logical learning, and learning conditionals. Huber also presents a defense of the instrumentalist understanding of normativity, or rationality, and an argument for the thesis that there are only hypothetical imperatives and no categorical imperatives. His distinctive use of means-end philosophy as a unifying methodological approach establishes a treatment of philosophy as a normative discipline, and of philosophical problems as entangled with one another. This position also explains the importance of logic to philosophy, without devolving into a separate technical theory.
A sophisticated, original introduction to the philosophy of mathematics from one of its leading thinkers Mathematics is a model of precision and objectivity, but it appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic, accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Oystein Linnebo, one of the world's leading scholars on the subject, introduces all of the classical approaches to the field as well as more specialized issues, including mathematical intuition, potential infinity, and the search for new mathematical axioms. Sophisticated but clear and approachable, this is an essential book for all students and teachers of philosophy and of mathematics.
Are there objects that are "thin" in the sense that not very much is required for their existence? Frege famously thought so. He claimed that the equinumerosity of the knives and the forks suffices for there to be objects such as the number of knives and the number of forks, and for these objects to be identical. The idea of thin objects holds great philosophical promise but has proved hard to explicate. Oystein Linnebo aims to do so by drawing on some Fregean ideas. First, to be an object is to be a possible referent of a singular term. Second, singular reference can be achieved by providing a criterion of identity for the would-be referent. The second idea enables a form of easy reference and thus, via the first idea, also a form of easy being. Paradox is avoided by imposing a predicativity restriction on the criteria of identity. But the abstraction based on a criterion of identity may result in an expanded domain. By iterating such expansions, a powerful account of dynamic abstraction is developed. The result is a distinctive approach to ontology. Abstract objects such as numbers and sets are demystified and allowed to exist alongside more familiar physical objects. And Linnebo also offers a novel approach to set theory which takes seriously the idea that sets are "formed" successively.
Numbers and other mathematical objects are exceptional in having no locations in space or time and no causes or effects in the physical world. This makes it difficult to account for the possibility of mathematical knowledge, leading many philosophers to embrace nominalism, the doctrine that there are no abstract entitles, and to embark on ambitious projects for interpreting mathematics so as to preserve the subject while eliminating its objects. A Subject With No Object cuts through a host of technicalities that have obscured previous discussions of these projects, and presents clear, concise accounts, with minimal prerequisites, of a dozen strategies for nominalistic interpretation of mathematics, thus equipping the reader to evaluate each and to compare different ones. The authors also offer critical discussion, rare in the literature, of the aims and claims of nominalistic interpretation, suggesting that it is significant in a very different way from that usually assumed. |
You may like...
Social Dynamics in a Systems Perspective
Sergio Barile, Marco Pellicano, …
Hardcover
Acculturating the Shopping Centre
Janina Gosseye, Tom Avermaete
Paperback
R1,292
Discovery Miles 12 920
Gentrification, Displacement, and…
Erualdo Gonzalez Romero, Michelle E. Zuniga, …
Paperback
R1,171
Discovery Miles 11 710
Endovascular Neurosurgery Through…
Aristotelis P. Mitsos
Hardcover
|