![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
Mathematics plays a central role in much of contemporary science,
but philosophers have struggled to understand what this role is or
how significant it might be for mathematics and science. In this
book Christopher Pincock tackles this perennial question in a new
way by asking how mathematics contributes to the success of our
best scientific representations. In the first part of the book this
question is posed and sharpened using a proposal for how we can
determine the content of a scientific representation. Several
different sorts of contributions from mathematics are then
articulated. Pincock argues that each contribution can be
understood as broadly epistemic, so that what mathematics
ultimately contributes to science is best connected with our
scientific knowledge.
The controversial matters surrounding the notion of anachronism are difficult ones: they have been broached by literary and art critics, by philosophers, as well as by historians of science. This book adopts a bottom-up approach to the many problems concerning anachronism in the history of mathematics. Some of the leading scholars in the field of history of mathematics reflect on the applicability of present-day mathematical language, concepts, standards, disciplinary boundaries, indeed notions of mathematics itself, to well-chosen historical case studies belonging to the mathematics of the past, in European and non-European cultures. A detailed introduction describes the key themes and binds the various chapters together. The interdisciplinary and transcultural approach adopted allows this volume to cover topics important for history of mathematics, history of the physical sciences, history of science, philosophy of mathematics, history of philosophy, methodology of history, non-European science, and the transmission of mathematical knowledge across cultures.
This book investigates the relationships between modern mathematics
and science (in particular, quantum mechanics) and the mode of
theorizing that Arkady Plotnitsky defines as "nonclassical" and
identifies in the work of Bohr, Heisenberg, Lacan, and Derrida.
Plotinsky argues that their scientific and philosophical works
radically redefined the nature and scope of our knowledge. Building
upon their ideas, the book finds a new, nonclassical character in
the "dream of great interconnections" Bohr described, thereby
engaging with recent debates about the "two cultures" (the
humanities and the sciences).
A comprehensive collection of historical readings in the philosophy of mathematics and a selection of influential contemporary work, this much-needed introduction reveals the rich history of the subject. An Historical Introduction to the Philosophy of Mathematics: A Reader brings together an impressive collection of primary sources from ancient and modern philosophy. Arranged chronologically and featuring introductory overviews explaining technical terms, this accessible reader is easy-to-follow and unrivaled in its historical scope. With selections from key thinkers such as Plato, Aristotle, Descartes, Hume and Kant, it connects the major ideas of the ancients with contemporary thinkers. A selection of recent texts from philosophers including Quine, Putnam, Field and Maddy offering insights into the current state of the discipline clearly illustrates the development of the subject. Presenting historical background essential to understanding contemporary trends and a survey of recent work, An Historical Introduction to the Philosophy of Mathematics: A Reader is required reading for undergraduates and graduate students studying the philosophy of mathematics and an invaluable source book for working researchers.
Mathematical and philosophical thought about continuity has changed considerably over the ages. Aristotle insisted that continuous substances are not composed of points, and that they can only be divided into parts potentially. There is something viscous about the continuous. It is a unified whole. This is in stark contrast with the prevailing contemporary account, which takes a continuum to be composed of an uncountably infinite set of points. This vlume presents a collective study of key ideas and debates within this history. The opening chapters focus on the ancient world, covering the pre-Socratics, Plato, Aristotle, and Alexander. The treatment of the medieval period focuses on a (relatively) recently discovered manuscript, by Bradwardine, and its relation to medieval views before, during, and after Bradwardine's time. In the so-called early modern period, mathematicians developed the calculus and, with that, the rise of infinitesimal techniques, thus transforming the notion of continuity. The main figures treated here include Galileo, Cavalieri, Leibniz, and Kant. In the early party of the nineteenth century, Bolzano was one of the first important mathematicians and philosophers to insist that continua are composed of points, and he made a heroic attempt to come to grips with the underlying issues concerning the infinite. The two figures most responsible for the contemporary orthodoxy regarding continuity are Cantor and Dedekind. Each is treated in an article, investigating their precursors and influences in both mathematics and philosophy. A new chapter then provides a lucid analysis of the work of the mathematician Paul Du Bois-Reymond, to argue for a constructive account of continuity, in opposition to the dominant Dedekind-Cantor account. This leads to consideration of the contributions of Weyl, Brouwer, and Peirce, who once dubbed the notion of continuity "the master-key which . . . unlocks the arcana of philosophy". And we see that later in the twentieth century Whitehead presented a point-free, or gunky, account of continuity, showing how to recover points as a kind of "extensive abstraction". The final four chapters each focus on a more or less contemporary take on continuity that is outside the Dedekind-Cantor hegemony: a predicative approach, accounts that do not take continua to be composed of points, constructive approaches, and non-Archimedean accounts that make essential use of infinitesimals.
In our hyper-modern world, we are bombarded with more facts, stats and information than ever before. So, what can we grasp hold of to make sense of it all? Oliver Johnson reveals how mathematical thinking can help us understand the myriad data all around us. From the exponential growth of viruses to social media filter-bubbles; from share price fluctuations to the cost of living; from the datafication of our sports pages to quantifying climate change. Not to mention the things much closer to home: ever wondered when the best time is to leave a party? What are the chances of rain ruining your barbecue this weekend? How about which queue is the best to join in the supermarket? Journeying through three sections - Randomness, Structure, and Information - we meet a host of brilliant minds, such Alan Turing, Enrico Fermi and Claude Shannon, and are equipped with the tools to cut through the noise all around us - from the Law of Large Numbers to Entropy to Brownian Motion. Lucid, surprising, and endlessly entertaining, Numbercrunch equips you with a definitive mathematician's toolkit to make sense of your world.
This book examines the birth of the scientific understanding of motion. It investigates which logical tools and methodological principles had to be in place to give a consistent account of motion, and which mathematical notions were introduced to gain control over conceptual problems of motion. It shows how the idea of motion raised two fundamental problems in the 5th and 4th century BCE: bringing together being and non-being, and bringing together time and space. The first problem leads to the exclusion of motion from the realm of rational investigation in Parmenides, the second to Zeno's paradoxes of motion. Methodological and logical developments reacting to these puzzles are shown to be present implicitly in the atomists, and explicitly in Plato who also employs mathematical structures to make motion intelligible. With Aristotle we finally see the first outline of the fundamental framework with which we conceptualise motion today.
A state-of-the-art guide to the fast-developing area of the philosophy of science. An eminent international team of authors covers a wide range of topics at the intersection of philosophy and the sciences, including causation, realism, methodology, epistemology and the philosophical foundations of physics, biology and psychology. An expanded version of a special issue of the journal "BJPS", this collection should be valuable to advanced students as well as to scholars.
A mathematical journey through the most fascinating problems of extremes and how to solve them What is the best way to photograph a speeding bullet? How can lost hikers find their way out of a forest? Why does light move through glass in the least amount of time possible? When Least Is Best combines the mathematical history of extrema with contemporary examples to answer these intriguing questions and more. Paul Nahin shows how life often works at the extremes-with values becoming as small (or as large) as possible-and he considers how mathematicians over the centuries, including Descartes, Fermat, and Kepler, have grappled with these problems of minima and maxima. Throughout, Nahin examines entertaining conundrums, such as how to build the shortest bridge possible between two towns, how to vary speed during a race, and how to make the perfect basketball shot. Moving from medieval writings and modern calculus to the field of optimization, the engaging and witty explorations of When Least Is Best will delight math enthusiasts everywhere.
The Quadrivium consists of the four Liberal Arts of Number, Geometry, Music, and Cosmology, studied from antiquity to the Renaissance as a way of glimpsing the nature of reality. They synthesize number, space, and time. Geometry is number in space, music is number in time, and the cosmos expresses number in space and time. Number, music, and geometry are metaphysical truths, good and beautiful everywhere at all times. Life across the universe investigates them. They foreshadow the physical sciences. This is the first volume to bring together the Quadrivium for many hundreds of years.
The idea of chaos figures prominently in mathematics today. It arose in the work of one of the greatest mathematicians of the late 19th century, Henri Poincare, on a problem in celestial mechanics: the three body problem. This ancient problem - to describe the paths of three bodies in mutual gravitational interaction - is one of those which is simple to pose but impossible to solve precisely. Poincare's famous memoir on the three body problem arose from his entry in the competition celebrating the 60th birthday of King Oscar of Sweden and Norway. His essay won the prize and was set up in print as a paper in Acta Mathematica when it was found to contain a deep and critical error.In correcting this error Poincare discovered mathematical chaos, as is now clear from Barrow-Green's pioneering study of a copy of the original memoir annotated by Poincare himself, recently discovered in the Institut Mittag-Leffler in Stockholm. ""Poincare and the Three Body Problem"" opens with a discussion of the development of the three body problem itself and Poincare's related earlier work. The book also contains intriguing insights into the contemporary European mathematical community revealed by the workings of the competition. After an account of the discovery of the error and a detailed comparative study of both the original memoir and its rewritten version, the book concludes with an account of the final memoir's reception, influence and impact, and an examination of Poincare's subsequent highly influential work in celestial mechanics.
The present book is an introduction to the philosophy of mathematics. It asks philosophical questions concerning fundamental concepts, constructions and methods - this is done from the standpoint of mathematical research and teaching. It looks for answers both in mathematics and in the philosophy of mathematics from their beginnings till today. The reference point of the considerations is the introducing of the reals in the 19th century that marked an epochal turn in the foundations of mathematics. In the book problems connected with the concept of a number, with the infinity, the continuum and the infinitely small, with the applicability of mathematics as well as with sets, logic, provability and truth and with the axiomatic approach to mathematics are considered. In Chapter 6 the meaning of infinitesimals to mathematics and to the elements of analysis is presented. The authors of the present book are mathematicians. Their aim is to introduce mathematicians and teachers of mathematics as well as students into the philosophy of mathematics. The book is suitable also for professional philosophers as well as for students of philosophy, just because it approaches philosophy from the side of mathematics. The knowledge of mathematics needed to understand the text is elementary. Reports on historical conceptions. Thinking about today's mathematical doing and thinking. Recent developments. Based on the third, revised German edition. For mathematicians - students, teachers, researchers and lecturers - and readersinterested in mathematics and philosophy. Contents On the way to the reals On the history of the philosophy of mathematics On fundamental questions of the philosophy of mathematics Sets and set theories Axiomatic approach and logic Thinking and calculating infinitesimally - First nonstandard steps Retrospection
In this book the classical Greek construction problems are explored in a didactical, enquiry based fashion using Interactive Geometry Software (IGS). The book traces the history of these problems, stating them in modern terminology. By focusing on constructions and the use of IGS the reader is confronted with the same problems that ancient mathematicians once faced. The reader can step into the footsteps of Euclid, Viete and Cusanus amongst others and then by experimenting and discovering geometric relationships far exceed their accomplishments. Exploring these problems with the neusis-method lets him discover a class of interesting curves. By experimenting he will gain a deeper understanding of how mathematics is created. More than 100 exercises guide him through methods which were developed to try and solve the problems. The exercises are at the level of undergraduate students and only require knowledge of elementary Euclidean geometry and pre-calculus algebra. It is especially well-suited for those students who are thinking of becoming a mathematics teacher and for mathematics teachers.
It is a fact of modern scientific thought that there is an enormous variety of logical systems - such as classical logic, intuitionist logic, temporal logic, and Hoare logic, to name but a few - which have originated in the areas of mathematical logic and computer science. In this book the author presents a systematic study of this rich harvest of logics via Tarski's well-known axiomatization of the notion of logical consequence. New and sometimes unorthodox treatments are given of the underlying principles and construction of many-valued logics, the logic of inexactness, effective logics, and modal logics. Throughout, numerous historical and philosophical remarks illuminate both the development of the subject and show the motivating influences behind its development. Those with a modest acquaintance of modern formal logic will find this to be a readable and not too technical account which will demonstrate the current diversity and profusion of logics. In particular, undergraduate and postgraduate students in mathematics, philosophy, computer science, and artificial intelligence will enjoy this introductory survey of the field.
Hex: The Full Story is for anyone - hobbyist, professional, student, teacher - who enjoys board games, game theory, discrete math, computing, or history. hex was discovered twice, in 1942 by Piet Hein and again in 1949 by John F. nash. How did this happen? Who created the puzzle for Hein's Danish newspaper column? How are Martin Gardner, David Gale, Claude Shannon, and Claude Berge involved? What is the secret to playing Hex well? The answers are inside... Features New documents on Hein's creation of Hex, the complete set of Danish puzzles, and the identity of their composer Chapters on Gale's game Bridg-it, the game Rex, computer Hex, open Hex problems, and more Dozens of new puzzles and solutions Study guide for Hex players Supplemenetary text for a course in game theory, discrete math, computer science, or science history
This collection examines the uses of quantification in climate science, higher education, and health. Numbers are both controlling and fragile. They drive public policy, figuring into everything from college rankings to vaccine efficacy rates. At the same time, they are frequent objects of obfuscation, manipulation, or outright denial. This timely collection by a diverse group of humanists and social scientists challenges undue reverence or skepticism toward quantification and offers new ideas about how to harmonize quantitative with qualitative forms of knowledge. Limits of the Numerical focuses on quantification in several contexts: climate change; university teaching and research; and health, medicine, and well-being more broadly. This volume shows the many ways that qualitative and quantitative approaches can productively interact-how the limits of the numerical can be overcome through equitable partnerships with historical, institutional, and philosophical analysis. The authors show that we can use numbers to hold the powerful to account, but only when those numbers are themselves democratically accountable.
This book traces the history of the concept of work from its earliest stages and shows that its further formalization leads to equilibrium principle and to the principle of virtual works, and so pointing the way ahead for future research and applications. The idea that something remains constant in a machine operation is very old and has been expressed by many mathematicians and philosophers such as, for instance, Aristotle. Thus, a concept of energy developed. Another important idea in machine operation is Archimedes' lever principle. In modern times the concept of work is analyzed in the context of applied mechanics mainly in Lazare Carnot mechanics and the mechanics of the new generation of polytechnical engineers like Navier, Coriolis and Poncelet. In this context the word "work" is finally adopted. These engineers are also responsible for the incorporation of the concept of work into the discipline of economics when they endeavoured to combine the study of the work of machines and men together.
This work examines the main directions of research conducted on the history of mathematics education. It devotes substantial attention to research methodologies and the connections between this field and other scholarly fields. The results of a survey about academic literature on this subject are accompanied by a discussion of what has yet to be done and problems that remain unsolved. The main topics you will find in "ICME-13 Topical Survey" include: * Discussions of methodological issues in the history of mathematics education and of the relation between this field and other scholarly fields. * The history of the formation and transformation of curricula and textbooks as a reflection of trends in social-economic, cultural and scientific-technological development. * The influence of politics, ideology and economics on the development of mathematics education, from a historical perspective. * The history of the preeminent mathematics education organizations and the work of leading figures in mathematics education. * Mathematics education practices and tools and the preparation of mathematics teachers, from a historical perspective.
This book is the “Study Book” of ICMI-Study no. 20, which was run in cooperation with the International Congress on Industry and Applied Mathematics (ICIAM). The editors were the co-chairs of the study (Damlamian, Straesser) and the organiser of the Study Conference (Rodrigues). The text contains a comprehensive report on the findings of the Study Conference, original plenary presentations of the Study Conference, reports on the Working Groups and selected papers from all over world. This content was selected by the editors as especially pertinent to the study each individual chapter represents a significant contribution to current research.
A sophisticated, original introduction to the philosophy of mathematics from one of its leading contemporary scholars Mathematics is one of humanity's most successful yet puzzling endeavors. It is a model of precision and objectivity, but appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic yet accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Written by Oystein Linnebo, one of the world's leading scholars on the subject, the book introduces all of the classical approaches to the field, including logicism, formalism, intuitionism, empiricism, and structuralism. It also contains accessible introductions to some more specialized issues, such as mathematical intuition, potential infinity, the iterative conception of sets, and the search for new mathematical axioms. The groundbreaking work of German mathematician and philosopher Gottlob Frege, one of the founders of analytic philosophy, figures prominently throughout the book. Other important thinkers whose work is introduced and discussed include Immanuel Kant, John Stuart Mill, David Hilbert, Kurt Godel, W. V. Quine, Paul Benacerraf, and Hartry H. Field. Sophisticated but clear and approachable, this is an essential introduction for all students and teachers of philosophy, as well as mathematicians and others who want to understand the foundations of mathematics.
In recent years there have been a number of books-both anthologies and monographs-that have focused on the Liar Paradox and, more generally, on the semantic paradoxes, either offering proposed treatments to those paradoxes or critically evaluating ones that occupy logical space. At the same time, there are a number of people who do great work in philosophy, who have various semantic, logical, metaphysical and/or epistemological commitments that suggest that they should say something about the Liar Paradox, yet who have said very little, if anything, about that paradox or about the extant projects involving it. The purpose of this volume is to afford those philosophers the opportunity to address what might be described as reflections on the Liar.
This is a collection of new investigations and discoveries on the theory of opposition (square, hexagon, octagon, polyhedra of opposition) by the best specialists from all over the world. The papers range from historical considerations to new mathematical developments of the theory of opposition including applications to theology, theory of argumentation and metalogic.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the second publication in the Lecture Notes in Logic series, is the proceedings of the Association for Symbolic Logic meeting held in Helsinki, Finland, in July 1990. It contains eighteen papers by leading researchers, covering all fields of mathematical logic from the philosophy of mathematics, through model theory, proof theory, recursion theory, and set theory, to the connections of logic to computer science. The articles published here are still widely cited and continue to provide ideas for ongoing research projects.
Think of a number, any number, or properties like fragility and humanity. These and other abstract entities are radically different from concrete entities like electrons and elbows. While concrete entities are located in space and time, have causes and effects, and are known through empirical means, abstract entities like meanings and possibilities are remarkably different. They seem to be immutable and imperceptible and to exist "outside" of space and time. This book provides a comprehensive critical assessment of the problems raised by abstract entities and the debates about existence, truth, and knowledge that surround them. It sets out the key issues that inform the metaphysical disagreement between platonists who accept abstract entities and nominalists who deny abstract entities exist. Beginning with the essentials of the platonist-nominalist debate, it explores the key arguments and issues informing the contemporary debate over abstract reality: arguments for platonism and their connections to semantics, science, and metaphysical explanation the abstract-concrete distinction and views about the nature of abstract reality epistemological puzzles surrounding our knowledge of mathematical entities and other abstract entities. arguments for nominalism premised upon concerns about paradox, parsimony, infinite regresses, underdetermination, and causal isolation nominalist options that seek to dispense with abstract entities. Including chapter summaries, annotated further reading, and a glossary, Abstract Entities is essential reading for anyone seeking a clear and authoritative introduction to the problems raised by abstract entities.
 From the Preface: “There are three volumes. The first one contains a curriculum vitae, a «Brève Analyse des Travaux» and a Iist of publications, including books and seminars. In addition the volume contains all papers of H. Cartan on analytic functions published before 1939. The other papers on analytic functions, e.g. those on Stein manifolds and coherent sheaves, make up the second volume. The third volume contains, with a few exceptions, all further papers of H. Cartan; among them is a reproduction of exposés 2 to 11 of his 1954/55 Seminar on Eilenberg-MacLane algebras. Each volume is arranged in chronological order. The reader should be aware that these volumes do not fully reflect H. Cartan's work, a large part of which is also contained in his fifteen ENS-Seminars (1948-1964) and in his book "Homological Algebra" with S. Eilenberg... Still, we trust that mathematicians throughout the world will welcome the availability of the "Oeuvres" of a mathematician whose writing and teaching has had such an influence on our generation.” |
You may like...
The Oxford Handbook of the History of…
Eleanor Robson, Jacqueline Stedall
Hardcover
R4,198
Discovery Miles 41 980
Making it Formally Explicit…
Gabor Hofer-Szabo, Leszek Wronski
Hardcover
Interpolation and Definability - Modal…
Dov M. Gabbay, Larisa Maksimova
Hardcover
R6,100
Discovery Miles 61 000
|