![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
Frege's Theorem collects eleven essays by Richard G Heck, Jr, one
of the world's leading authorities on Frege's philosophy. The
Theorem is the central contribution of Gottlob Frege's formal work
on arithmetic. It tells us that the axioms of arithmetic can be
derived, purely logically, from a single principle: the number of
these things is the same as the number of those things just in case
these can be matched up one-to-one with those. But that principle
seems so utterly fundamental to thought about number that it might
almost count as a definition of number. If so, Frege's Theorem
shows that arithmetic follows, purely logically, from a near
definition. As Crispin Wright was the first to make clear, that
means that Frege's logicism, long thought dead, might yet be
viable.
Agenda Relevance is the first volume in the authors' omnibus
investigation of
"
Chemistry, physics and biology are by their nature genuinely difficult. Mathematics, however, is man-made, and therefore not as complicated. Two ideas form the basis for this book: 1) to use ordinary mathematics to describe the simplicity in the structure of mathematics and 2) to develop new branches of mathematics to describe natural sciences.
This volume contains fourteen papers that were presented at the 2016 Annual Meeting of the Canadian Society for History and Philosophy of Mathematics/La Societe Canadienne d'Histoire et de Philosophie des Mathematiques, held at the University of Calgary in Alberta, Canada. In addition to showcasing rigorously reviewed modern scholarship on an interesting variety of topics in the history and philosophy of mathematics, this meeting also honored the life and work of the logician and philosopher of mathematics Aldo Antonelli (1962-2015). The first four papers in this book are part of that remembrance and have a philosophical focus. Included in these are a discussion of Bolzano's objections to Kant's philosophy of mathematics and an examination of the influence of rhetorical and poetic aesthetics on the development of symbols in the 16th and 17th Centuries. The remaining papers deal with the history of mathematics and cover such subjects as Early schemes for polar ordinates in the work of L'Hopital, based on lessons given to him by Bernoulli A method devised by Euler for determining if a number is a sum of two squares Playfair's Axiom and what it reveals about the history of 19th-Century mathematics education The modern library classification system for mathematical subjects An exploration of various examples of sundials throughout Paris Written by leading scholars in the field, these papers are accessible to not only mathematicians and students of the history and philosophy of mathematics, but also anyone with a general interest in mathematics.
Logic is a field studied mainly by researchers and students of philosophy, mathematics and computing. Inductive logic seeks to determine the extent to which the premisses of an argument entail its conclusion, aiming to provide a theory of how one should reason in the face of uncertainty. It has applications to decision making and artificial intelligence, as well as how scientists should reason when not in possession of the full facts. In this book, Jon Williamson embarks on a quest to find a general, reasonable, applicable inductive logic (GRAIL), all the while examining why pioneers such as Ludwig Wittgenstein and Rudolf Carnap did not entirely succeed in this task. Along the way he presents a general framework for the field, and reaches a new inductive logic, which builds upon recent developments in Bayesian epistemology (a theory about how strongly one should believe the various propositions that one can express). The book explores this logic in detail, discusses some key criticisms, and considers how it might be justified. Is this truly the GRAIL? Although the book presents new research, this material is well suited to being delivered as a series of lectures to students of philosophy, mathematics, or computing and doubles as an introduction to the field of inductive logic
This volume is a collection of essays in honour of Professor Mohammad Ardeshir. It examines topics which, in one way or another, are connected to the various aspects of his multidisciplinary research interests. Based on this criterion, the book is divided into three general categories. The first category includes papers on non-classical logics, including intuitionistic logic, constructive logic, basic logic, and substructural logic. The second category is made up of papers discussing issues in the contemporary philosophy of mathematics and logic. The third category contains papers on Avicenna's logic and philosophy. Mohammad Ardeshir is a full professor of mathematical logic at the Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, where he has taught generations of students for around a quarter century. Mohammad Ardeshir is known in the first place for his prominent works in basic logic and constructive mathematics. His areas of interest are however much broader and include topics in intuitionistic philosophy of mathematics and Arabic philosophy of logic and mathematics. In addition to numerous research articles in leading international journals, Ardeshir is the author of a highly praised Persian textbook in mathematical logic. Partly through his writings and translations, the school of mathematical intuitionism was introduced to the Iranian academic community.
This book uses Ludwig Wittgenstein's philosophical methodology to solve a problem that has perplexed thinkers for thousands of years: 'how come (abstract) mathematics applies so wonderfully well to the (concrete, physical) world?' The book is distinctive in several ways. First, it gives the reader a route into understanding important features of Wittgenstein's writings and lectures by using his methodology to tackle this long-standing and seemingly intractable philosophical problem. More than this, though, it offers an outline of important (sometimes little-known) aspects of the development of mathematical thought through the ages, and an engagement of Wittgenstein's philosophy with this and with contemporary philosophy of mathematics on its own terms. A clear overview of all this in the context of Wittgenstein's philosophy of mathematics is interesting in its own right; it is also just what is needed to solve the problem of mathematics and world.
Contents: Introduction; I. ONTOLOGY; 1. Existence (1987); 2. Nonexistence (1998); 3. Mythical Objects (2002); II. NECESSITY; 4. Modal Logic Kalish-and-Montague Style (1994); 5. Impossible Worlds (1984); 6. An Empire of Thin Air (1988); 7. The Logic of What Might Have Been (1989); III. IDENTITY; 8. The fact that x=y (1987); 9. This Side of Paradox (1993); 10. Identity Facts (2003); 11. Personal Identity: What's the Problem? (1995); IV. PHILOSOPHY OF MATHEMATICS; 12. Wholes, Parts, and Numbers (1997); 13. The Limits of Human Mathematics (2001); V. THEORY OF MEANING AND REFERENCE; 14. On Content (1992); 15. On Designating (1997); 16. A Problem in the Frege-Church Theory of Sense and Denotation (1993); 17. The Very Possibility of Language (2001); 18. Tense and Intension (2003); 19. Pronouns as Variables (2005)
This book is a specialized monograph on interpolation and definability, a notion central in pure logic and with significant meaning and applicability in all areas where logic is applied, especially computer science, artificial intelligence, logic programming, philosophy of science and natural language. Suitable for researchers and graduate students in mathematics, computer science and philosophy, this is the latest in the prestigous world-renowned Oxford Logic Guides, which contains Michael Dummet's Elements of intuitionism (second edition), J. M. Dunn and G. Hardegree's Algebraic Methods in Philosophical Logic, H. Rott's Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic Reasoning, P. T. Johnstone's Sketches of an Elephant: A Topos Theory Compendium: Volumes 1 and 2, and David J. Pym and Eike Ritter's Reductive Logic and Proof Search: Proof theory, semantics and control.
Quantum gravity is the name given to a theory that unites general relativity - Einstein's theory of gravitation and spacetime - with quantum field theory, our framework for describing non-gravitational forces. The Structural Foundations of Quantum Gravity brings together philosophers and physicists to discuss a range of conceptual issues that surface in the effort to unite these theories, focusing in particular on the ontological nature of the spacetime that results. Although there has been a great deal written about quantum gravity from the perspective of physicists and mathematicians, very little attention has been paid to the philosophical aspects. This volume closes that gap, with essays written by some of the leading researchers in the field. Individual papers defend or attack a structuralist perspective on the fundamental ontologies of our physical theories, which offers the possibility of shedding new light on a number of foundational problems. It is a book that will be of interest not only to physicists and philosophers of physics but to anyone concerned with foundational issues and curious to explore new directions in our understanding of spacetime and quantum physics.
This book gathers the best presentations from the Topic Study Group 30: Mathematics Competitions at ICME-13 in Hamburg, and some from related groups, focusing on the field of working with gifted students. Each of the chapters includes not only original ideas, but also original mathematical problems and their solutions. The book is a valuable resource for researchers in mathematics education, secondary and college mathematics teachers around the globe as well as their gifted students.
This book collects research papers on the philosophical foundations of probability, causality, spacetime and quantum theory. The papers are related to talks presented in six subsequent workshops organized by The Budapest-Krakow Research Group on Probability, Causality and Determinism. Coverage consists of three parts. Part I focuses on the notion of probability from a general philosophical and formal epistemological perspective. Part II applies probabilistic considerations to address causal questions in the foundations of quantum mechanics. Part III investigates the question of indeterminism in spacetime theories. It also explores some related questions, such as decidability and observation. The contributing authors are all philosophers of science with a strong background in mathematics or physics. They believe that paying attention to the finer formal details often helps avoiding pitfalls that exacerbate the philosophical problems that are in the center of focus of contemporary research. The papers presented here help make explicit the mathematical-structural assumptions that underlie key philosophical argumentations. This formally rigorous and conceptually precise approach will appeal to researchers and philosophers as well as mathematicians and statisticians.
A comprehensive philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes that bedevil set theory. Potter offers a strikingly simple version of the most widely accepted response to the paradoxes, which classifies sets by means of a hierarchy of levels. What makes the book unique is that it interweaves a careful presentation of the technical material with a penetrating philosophical critique. Potter does not merely expound the theory dogmatically but at every stage discusses in detail the reasons that can be offered for believing it to be true.
Many philosophers these days consider themselves naturalists, but it's doubtful any two of them intend the same position by the term. In this book, Penelope Maddy describes and practises a particularly austere form of naturalism called 'Second Philosophy'. Without a definitive criterion for what counts as 'science' and what doesn't, Second Philosophy can't be specified directly - 'trust only the methods of science!' or some such thing - so Maddy proceeds instead by illustrating the behaviours of an idealized inquirer she calls the 'Second Philosopher'. This Second Philosopher begins from perceptual common sense and progresses from there to systematic observation, active experimentation, theory formation and testing, working all the while to assess, correct and improve her methods as she goes. Second Philosophy is then the result of the Second Philosopher's investigations. Maddy delineates the Second Philosopher's approach by tracing her reactions to various familiar skeptical and transcendental views (Descartes, Kant, Carnap, late Putnam, van Fraassen), comparing her methods to those of other self-described naturalists (especially Quine), and examining a prominent contemporary debate (between disquotationalists and correspondence theorists in the theory of truth) to extract a properly second-philosophical line of thought. She then undertakes to practise Second Philosophy in her reflections on the ground of logical truth, the methodology, ontology and epistemology of mathematics, and the general prospects for metaphysics naturalized.
This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl's phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of "naturalist" and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the "unreasonable" effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies.
This collection presents significant contributions from an international network project on mathematical cultures, including essays from leading scholars in the history and philosophy of mathematics and mathematics education. Mathematics has universal standards of validity. Nevertheless, there are local styles in mathematical research and teaching, and great variation in the place of mathematics in the larger cultures that mathematical practitioners belong to. The reflections on mathematical cultures collected in this book are of interest to mathematicians, philosophers, historians, sociologists, cognitive scientists and mathematics educators.
Robert Hanna presents a fresh view of the Kantian and analytic traditions that have dominated continental European and Anglo-American philosophy over the last two centuries, and of the relation between them. The rise of analytic philosophy decisively marked the end of the hundred-year dominance of Kant's philosophy in Europe. But Hanna shows that the analytic tradition also emerged from Kant's philosophy in the sense that its members were able to define and legitimate their ideas only by means of an intensive, extended engagement with, and a partial or complete rejection of, the Critical Philosophy. Hanna puts forward a new 'cognitive-semantic' interpretation of transcendental idealism, and a vigorous defence of Kant's theory of analytic and synthetic necessary truth. These will make Kant and the Foundations of Analytic Philosophy compelling reading not just for specialists in the history of philosophy, but for all who are interested in these fundamental philosophical issues.
Hartry Field presents a selection of thirteen of his most important essays on a set of related topics at the foundations of philosophy; one essay is previously unpublished, and eight are accompanied by substantial new postscripts. Five of the essays are primarily about truth, meaning, and propositional attitudes, five are primarily about semantic indeterminacy and other kinds of 'factual defectiveness' in our discourse, and three are primarily about issues concerning objectivity, especially in mathematics and in epistemology. This influential work by a key figure in contemporary philosophy will reward the attention of any philosopher interested in language, epistemology, or mathematics.
This book focuses on the game-theoretical semantics and epistemic logic of Jaakko Hintikka. Hintikka was a prodigious and esteemed philosopher and logician, and his death in August 2015 was a huge loss to the philosophical community. This book, whose chapters have been in preparation for several years, is dedicated to the work of Jaako Hintikka, and to his memory. This edited volume consists of 23 contributions from leading logicians and philosophers, who discuss themes that span across the entire range of Hintikka's career. Semantic Representationalism, Logical Dialogues, Knowledge and Epistemic logic are among some of the topics covered in this book's chapters. The book should appeal to students, scholars and teachers who wish to explore the philosophy of Jaako Hintikka.
This book presents 25 selected papers from the International Conference on "Developing Synergies between Islam & Science and Technology for Mankind's Benefit" held at the International Institute for Advanced Islamic Studies Malaysia, Kuala Lumpur, in October 2014. The papers cover a broad range of issues reflecting the main conference themes: Cosmology and the Universe, Philosophy of Science and the Emergence of Biological Systems, Principles and Applications of Tawhidic Science, Medical Applications of Tawhidic Science and Bioethics, and the History and Teaching of Science from an Islamic Perspective. Highlighting the relationships between the Islamic religious worldview and the physical sciences, the book challenges secularist paradigms on the study of Science and Technology. Integrating metaphysical perspectives of Science, topics include Islamic approaches to S&T such as an Islamic epistemology of the philosophy of science, a new quantum theory, environmental care, avoiding wasteful consumption using Islamic teachings, and emotional-blasting psychological therapy. Eminent contributing scholars include Osman Bakar, Mohammad Hashim Kamali, Mehdi Golshani, Mohd. Kamal Hassan, Adi Setia and Malik Badri. The book is essential reading for a broad group of academics and practitioners, from Islamic scholars and social scientists to (physical) scientists and engineers.
Our much-valued mathematical knowledge rests on two supports: the logic of proof and the axioms from which those proofs begin. Naturalism in Mathematics investigates the status of the latter, the fundamental assumptions of mathematics. These were once held to be self-evident, but progress in work on the foundations of mathematics, especially in set theory, has rendered that comforting notion obsolete. Given that candidates for axiomatic status cannot be proved, what sorts of considerations can be offered for or against them? That is the central question addressed in this book. One answer is that mathematics aims to describe an objective world of mathematical objects, and that axiom candidates should be judged by their truth or falsity in that world. This promising view-realism-is assessed and finally rejected in favour of another-naturalism-which attends less to metaphysical considerations of objective truth and falsity, and more to practical considerations drawn from within mathematics itself. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be helpfully applied in the assessment of candidates for axiomatic status in set theory. Maddy's clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both disciplines.
This book offers an up-to-date overview of the research on philosophy of mathematics education, one of the most important and relevant areas of theory. The contributions analyse, question, challenge, and critique the claims of mathematics education practice, policy, theory and research, offering ways forward for new and better solutions. The book poses basic questions, including: What are our aims of teaching and learning mathematics? What is mathematics anyway? How is mathematics related to society in the 21st century? How do students learn mathematics? What have we learnt about mathematics teaching? Applied philosophy can help to answer these and other fundamental questions, and only through an in-depth analysis can the practice of the teaching and learning of mathematics be improved. The book addresses important themes, such as critical mathematics education, the traditional role of mathematics in schools during the current unprecedented political, social, and environmental crises, and the way in which the teaching and learning of mathematics can better serve social justice and make the world a better place for the future.
This volume contains thirteen papers that were presented at the 2017 Annual Meeting of the Canadian Society for History and Philosophy of Mathematics/Societe canadienne d'histoire et de philosophie des mathematiques, which was held at Ryerson University in Toronto. It showcases rigorously reviewed modern scholarship on an interesting variety of topics in the history and philosophy of mathematics from Ancient Greece to the twentieth century. A series of chapters all set in the eighteenth century consider topics such as John Marsh's techniques for the computation of decimal fractions, Euler's efforts to compute the surface area of scalene cones, a little-known work by John Playfair on the practical aspects of mathematics, and Monge's use of descriptive geometry. After a brief stop in the nineteenth century to consider the culture of research mathematics in 1860s Prussia, the book moves into the twentieth century with an examination of the historical context within which the Axiom of Choice was developed and a paper discussing Anatoly Vlasov's adaptation of the Boltzmann equation to ionized gases. The remaining chapters deal with the philosophy of twentieth-century mathematics through topics such as an historically informed discussion of finitism and its limits; a reexamination of Mary Leng's defenses of mathematical fictionalism through an alternative, anti-realist approach to mathematics; and a look at the reasons that mathematicians select specific problems to pursue. Written by leading scholars in the field, these papers are accessible to not only mathematicians and students of the history and philosophy of mathematics, but also anyone with a general interest in mathematics.
Truth Through Proof defends an anti-platonist philosophy of
mathematics derived from game formalism. Classic formalists claimed
implausibly that mathematical utterances are truth-valueless moves
in a game. Alan Weir aims to develop a more satisfactory successor
to game formalism utilising a widely accepted, broadly neo-Fregean
framework, in which the proposition expressed by an utterance is a
function of both sense and background circumstance. This framework
allows for sentences whose truth-conditions are not
representational, which are made true or false by conditions
residing in the circumstances of utterances but not transparently
in the sense.
|
![]() ![]() You may like...
HIV/AIDS and the Threat to National and…
Robert L. Ostergard, Jr.
Hardcover
R3,029
Discovery Miles 30 290
Transdisciplinary Marine Research…
Silvia Gomez, Vera Koepsel
Hardcover
R4,121
Discovery Miles 41 210
|