![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
Logical consequence is the relation that obtains between premises and conclusion(s) in a valid argument. Orthodoxy has it that valid arguments are necessarily truth-preserving, but this platitude only raises a number of further questions, such as: how does the truth of premises guarantee the truth of a conclusion, and what constraints does validity impose on rational belief? This volume presents thirteen essays by some of the most important scholars in the field of philosophical logic. The essays offer ground-breaking new insights into the nature of logical consequence; the relation between logic and inference; how the semantics and pragmatics of natural language bear on logic; the relativity of logic; and the structural properties of the consequence relation.
The concept of infinity is one of the most important, and at the same time, one of the most mysterious concepts of science. Already in antiquity many philosophers and mathematicians pondered over its contradictory nature. In mathematics, the contradictions connected with infinity intensified after the creation, at the end of the 19th century, of the theory of infinite sets and the subsequent discovery, soon after, of paradoxes in this theory. At the time, many scientists ignored the paradoxes and used set theory extensively in their work, while others subjected set-theoretic methods in mathematics to harsh criticism. The debate intensified when a group of French mathematicians, who wrote under the pseudonym of Nicolas Bourbaki, tried to erect the whole edifice of mathematics on the single notion of a set. Some mathematicians greeted this attempt enthusiastically while others regarded it as an unnecessary formalization, an attempt to tear mathematics away from life-giving practical applications that sustain it. These differences notwithstanding, Bourbaki has had a significant influence on the evolution of mathematics in the twentieth century. In this book we try to tell the reader how the idea of the infinite arose and developed in physics and in mathematics, how the theory of infinite sets was constructed, what paradoxes it has led to, what significant efforts have been made to eliminate the resulting contradictions, and what routes scientists are trying to find that would provide a way out of the many difficulties.
This book demonstrates how a radical version of physicalism ('No-Self Physicalism') can offer an internally coherent and comprehensive philosophical worldview. It first argues that a coherent physicalist should explicitly treat a cognitive subject merely as a physical thing and should not vaguely assume an amorphous or even soul-like subject or self. This approach forces the physicalist to re-examine traditional core philosophical notions such as truth, analyticity, modality, apriority because our traditional understandings of them appear to be predicated on a cognitive subject that is not literally just a physical thing. In turn, working on the assumption that a cognitive subject is itself completely physical, namely a neural network-based robot programmed by evolution (hence the term 'No-Self'), the book proposes physicalistic theories on conceptual representation, truth, analyticity, modality, the nature of mathematics, epistemic justification, knowledge, apriority and intuition, as well as a physicalistic ontology. These are meant to show that this No-Self Physicalism, perhaps the most minimalistic and radical version of physicalism proposed to date, can accommodate many aspects that have traditionally interested philosophers. Given its refreshingly radical approach and painstakingly developed content, the book is of interest to anyone who is seeking a coherent philosophical worldview in this age of science.
Roy T Cook examines the Yablo paradox-a paradoxical, infinite sequence of sentences, each of which entails the falsity of all others later than it in the sequence-with special attention paid to the idea that this paradox provides us with a semantic paradox that involves no circularity. The three main chapters of the book focus, respectively, on three questions that can be (and have been) asked about the Yablo construction. First we have the Characterization Problem, which asks what patterns of sentential reference (circular or not) generate semantic paradoxes. Addressing this problem requires an interesting and fruitful detour through the theory of directed graphs, allowing us to draw interesting connections between philosophical problems and purely mathematical ones. Next is the Circularity Question, which addresses whether or not the Yablo paradox is genuinely non-circular. Answering this question is complicated: although the original formulation of the Yablo paradox is circular, it turns out that it is not circular in any sense that can bear the blame for the paradox. Further, formulations of the paradox using infinitary conjunction provide genuinely non-circular constructions. Finally, Cook turns his attention to the Generalizability Question: can the Yabloesque pattern be used to generate genuinely non-circular variants of other paradoxes, such as epistemic and set-theoretic paradoxes? Cook argues that although there are general constructions-unwindings-that transform circular constructions into Yablo-like sequences, it turns out that these sorts of constructions are not 'well-behaved' when transferred from semantic puzzles to puzzles of other sorts. He concludes with a short discussion of the connections between the Yablo paradox and the Curry paradox.
Topology is the mathematical study of the most basic geometrical structure of a space. Mathematical physics uses topological spaces as the formal means for describing physical space and time. This book proposes a completely new mathematical structure for describing geometrical notions such as continuity, connectedness, boundaries of sets, and so on, in order to provide a better mathematical tool for understanding space-time. This is the initial volume in a two-volume set, the first of which develops the mathematical structure and the second of which applies it to classical and Relativistic physics. The book begins with a brief historical review of the development of mathematics as it relates to geometry, and an overview of standard topology. The new theory, the Theory of Linear Structures, is presented and compared to standard topology. The Theory of Linear Structures replaces the foundational notion of standard topology, the open set, with the notion of a continuous line. Axioms for the Theory of Linear Structures are laid down, and definitions of other geometrical notions developed in those terms. Various novel geometrical properties, such as a space being intrinsically directed, are defined using these resources. Applications of the theory to discrete spaces (where the standard theory of open sets gets little purchase) are particularly noted. The mathematics is developed up through homotopy theory and compactness, along with ways to represent both affine (straight line) and metrical structure.
This handbook features essays written by both literary scholars and mathematicians that examine multiple facets of the connections between literature and mathematics. These connections range from mathematics and poetic meter to mathematics and modernism to mathematics as literature. Some chapters focus on a single author, such as mathematics and Ezra Pound, Gertrude Stein, or Charles Dickens, while others consider a mathematical topic common to two or more authors, such as squaring the circle, chaos theory, Newton's calculus, or stochastic processes. With appeal for scholars and students in literature, mathematics, cultural history, and history of mathematics, this important volume aims to introduce the range, fertility, and complexity of the connections between mathematics, literature, and literary theory. Chapter 1 is available open access under a Creative Commons Attribution 4.0 International License via [link.springer.com|http://link.springer.com/].
Our conception of logical space is the set of distinctions we use to navigate the world. In The Construction of Logical Space Agustin Rayo defends the idea that one's conception of logical space is shaped by one's acceptance or rejection of 'just is'-statements: statements like 'to be composed of water just is to be composed of H2O', or 'for the number of the dinosaurs to be zero just is for there to be no dinosaurs'. The resulting picture is used to articulate a conception of metaphysical possibility that does not depend on a reduction of the modal to the non-modal, and to develop a trivialist philosophy of mathematics, according to which the truths of pure mathematics have trivial truth-conditions.
This monograph examines the private annotations that Ludwig Wittgenstein made to his copy of G.H. Hardy's classic textbook, A Course of Pure Mathematics. Complete with actual images of the annotations, it gives readers a more complete picture of Wittgenstein's remarks on irrational numbers, which have only been published in an excerpted form and, as a result, have often been unjustly criticized. The authors first establish the context behind the annotations and discuss the historical role of Hardy's textbook. They then go on to outline Wittgenstein's non-extensionalist point of view on real numbers, assessing his manuscripts and published remarks and discussing attitudes in play in the philosophy of mathematics since Dedekind. Next, coverage focuses on the annotations themselves. The discussion encompasses irrational numbers, the law of excluded middle in mathematics and the notion of an "improper picture," the continuum of real numbers, and Wittgenstein's attitude toward functions and limits.
The contributions gathered here demonstrate how categorical ontology can provide a basis for linking three important basic sciences: mathematics, physics, and philosophy. Category theory is a new formal ontology that shifts the main focus from objects to processes. The book approaches formal ontology in the original sense put forward by the philosopher Edmund Husserl, namely as a science that deals with entities that can be exemplified in all spheres and domains of reality. It is a dynamic, processual, and non-substantial ontology in which all entities can be treated as transformations, and in which objects are merely the sources and aims of these transformations. Thus, in a rather surprising way, when employed as a formal ontology, category theory can unite seemingly disparate disciplines in contemporary science and the humanities, such as physics, mathematics and philosophy, but also computer and complex systems science.
‘Another terrific book by Rob Eastaway’ SIMON SINGH ‘A delightfully accessible guide to how to play with numbers’ HANNAH FRY How many cats are there in the world? What's the chance of winning the lottery twice? And just how long does it take to count to a million? Learn how to tackle tricky maths problems with nothing but the back of an envelope, a pencil and some good old-fashioned brain power. Join Rob Eastaway as he takes an entertaining look at how to figure without a calculator. Packed with amusing anecdotes, quizzes, and handy calculation tips for every situation, Maths on the Back of an Envelope is an invaluable introduction to the art of estimation, and a welcome reminder that sometimes our own brain is the best tool we have to deal with numbers.
In Frege's Conception of Logic Patricia A. Blanchette explores the relationship between Gottlob Frege's understanding of conceptual analysis and his understanding of logic. She argues that the fruitfulness of Frege's conception of logic, and the illuminating differences between that conception and those more modern views that have largely supplanted it, are best understood against the backdrop of a clear account of the role of conceptual analysis in logical investigation. The first part of the book locates the role of conceptual analysis in Frege's logicist project. Blanchette argues that despite a number of difficulties, Frege's use of analysis in the service of logicism is a powerful and coherent tool. As a result of coming to grips with his use of that tool, we can see that there is, despite appearances, no conflict between Frege's intention to demonstrate the grounds of ordinary arithmetic and the fact that the numerals of his derived sentences fail to co-refer with ordinary numerals. In the second part of the book, Blanchette explores the resulting conception of logic itself, and some of the straightforward ways in which Frege's conception differs from its now-familiar descendants. In particular, Blanchette argues that consistency, as Frege understands it, differs significantly from the kind of consistency demonstrable via the construction of models. To appreciate this difference is to appreciate the extent to which Frege was right in his debate with Hilbert over consistency- and independence-proofs in geometry. For similar reasons, modern results such as the completeness of formal systems and the categoricity of theories do not have for Frege the same importance they are commonly taken to have by his post-Tarskian descendants. These differences, together with the coherence of Frege's position, provide reason for caution with respect to the appeal to formal systems and their properties in the treatment of fundamental logical properties and relations.
One main interest of philosophy is to become clear about the assumptions, premisses and inconsistencies of our thoughts and theories. And even for a formal language like mathematics it is controversial if consistency is acheivable or necessary like the articles in the firt part of the publication show. Also the role of formal derivations, the role of the concept of apriority, and the intuitions of mathematical principles and properties need to be discussed. The second part is a contribution on nominalistic and platonistic views in mathematics, like the "indispensability argument" of W. v. O. Quine H. Putnam and the "makes no difference argument" of A. Baker. Not only in retrospect, the third part shows the problems of Mill, Frege's and the unity of mathematics and Descartes's contradictional conception of mathematical essences. Together, these articles give us a hint into the relationship between mathematics and world, that is, one of the central problems in philosophy of mathematics and philosophy of science.
How does Russell's realist conception of the proposition and its
constituents inform the techniques for analysis which he adopted in
mathematics? Jolen Galaugher's book sheds light on this perplexing
issue. In this book, Galaugher provides a detailed treatment of
Russell's early conception of analysis in the light of the
philosophical doctrines to which it answered, and the demands
imposed by existing mathematics on his early logicist program. She
ties together the philosophical commitments which occasioned
Russell's break with idealism and the problems which guided his
selection of technical apparatus in his embrace of logicism. The
result is a detailed synthesis of the primary materials from the
emergence of Russell's realism in 1898 to his landmark theory of
descriptions in 1905. Galaugher's broad thesis is that although
Russell adopted increasingly refined techniques by which to carry
out his logical analyses and avoid the Contradiction, the most
crucial aspects of his philosophical conception of logical analysis
were retained.
This book examines the birth of the scientific understanding of motion. It investigates which logical tools and methodological principles had to be in place to give a consistent account of motion, and which mathematical notions were introduced to gain control over conceptual problems of motion. It shows how the idea of motion raised two fundamental problems in the 5th and 4th century BCE: bringing together being and non-being, and bringing together time and space. The first problem leads to the exclusion of motion from the realm of rational investigation in Parmenides, the second to Zeno's paradoxes of motion. Methodological and logical developments reacting to these puzzles are shown to be present implicitly in the atomists, and explicitly in Plato who also employs mathematical structures to make motion intelligible. With Aristotle we finally see the first outline of the fundamental framework with which we conceptualise motion today.
* Written by an interdisciplinary group of specialists from the arts, humanities and sciences at Oxford University * Suitable for a wide non-academic readership, and will appeal to anyone with an interest in mathematics, science and philosophy.
How should we think about the meaning of the words that make up our language? How does reference of these terms work, and what is their referent when these are connected to abstract objects rather than to concrete ones? Can logic help to address these questions? This collection of papers aims to unify the questions of syntax and semantics of language, which span across the fields of logic, philosophy and ontology of language. The leading motif of the presented selection is the differentiation between linguistic tokens (material, concrete objects) on the one hand and linguistic types (ideal, abstract objects) on the other. Through a promenade among articles that span over all of the Author's career, this book addresses the complex philosophical question of the ontology of language by following the crystalline conceptual tools offered by logic. At the core of Wybraniec-Skardowska's scholarship is the idea that language is an ontological being, characterized in compliance with the logical conception of language proposed by Ajdukiewicz. The application throughout the book of tools of classical logic and set theory results fosters the emergence of a general formal logical theory of syntax, semantics and of the pragmatics of language, which takes into account the duality token-type in the understanding of linguistic expressions. Via a functional approach to language itself, logic appears as ontologically neutral with respect to existential assumptions relating to the nature of linguistic expressions and their extra-linguistic counterparts. The book is addressed to readers both at the graduate and undergraduate level, but also to a more general audience interested in getting a firmer grip on the interplay between reality and the language we use to describe and understand it.
The biological and social sciences often generalize causal
conclusions from one context or location to others that may differ
in some relevant respects, as is illustrated by inferences from
animal models to humans or from a pilot study to a broader
population. Inferences like these are known as extrapolations. The
question of how and when extrapolation can be legitimate is a
fundamental issue for the biological and social sciences that has
not received the attention it deserves. In Across the Boundaries,
Steel argues that previous accounts of extrapolation are inadequate
and proposes a better approach that is able to answer
methodological critiques of extrapolation from animal models to
humans.
Spherical Geometry and Its Applications introduces spherical geometry and its practical applications in a mathematically rigorous form. The text can serve as a course in spherical geometry for mathematics majors. Readers from various academic backgrounds can comprehend various approaches to the subject. The book introduces an axiomatic system for spherical geometry and uses it to prove the main theorems of the subject. It also provides an alternate approach using quaternions. The author illustrates how a traditional axiomatic system for plane geometry can be modified to produce a different geometric world - but a geometric world that is no less real than the geometric world of the plane. Features: A well-rounded introduction to spherical geometry Provides several proofs of some theorems to appeal to larger audiences Presents principal applications: the study of the surface of the earth, the study of stars and planets in the sky, the study of three- and four-dimensional polyhedra, mappings of the sphere, and crystallography Many problems are based on propositions from the ancient text Sphaerica of Menelaus
The Quantum of Explanation advances a bold new theory of how explanation ought to be understood in philosophical and cosmological inquiries. Using a complete interpretation of Alfred North Whitehead's philosophical and mathematical writings and an interpretive structure that is essentially new, Auxier and Herstein argue that Whitehead has never been properly understood, nor has the depth and breadth of his contribution to the human search for knowledge been assimilated by his successors. This important book effectively applies Whitehead's philosophy to problems in the interpretation of science, empirical knowledge, and nature. It develops a new account of philosophical naturalism that will contribute to the current naturalism debate in both Analytic and Continental philosophy. Auxier and Herstein also draw attention to some of the most important differences between the process theology tradition and Whitehead's thought, arguing in favor of a Whiteheadian naturalism that is more or less independent of theological concerns. This book offers a clear and comprehensive introduction to Whitehead's philosophy and is an essential resource for students and scholars interested in American philosophy, the philosophy of mathematics and physics, and issues associated with naturalism, explanation and radical empiricism.
Offers the latest research on the topic.
This book analyses the straw man fallacy and its deployment in philosophical reasoning. While commonly invoked in both academic dialogue and public discourse, it has not until now received the attention it deserves as a rhetorical device. Scott Aikin and John Casey propose that straw manning essentially consists in expressing distorted representations of one’s critical interlocutor. To this end, the straw man comprises three dialectical forms, and not only the one that is usually suggested: the straw man, the weak man and the hollow man. Moreover, they demonstrate that straw manning is unique among fallacies as it has no particular logical form in itself, because it is an instance of inappropriate meta-argument, or argument about arguments. They discuss the importance of the onlooking audience to the successful deployment of the straw man, reasoning that the existence of an audience complicates the dialectical boundaries of argument. Providing a lively, provocative and thorough analysis of the straw man fallacy, this book will appeal to postgraduates and researchers alike, working in a range of fields including fallacies, rhetoric, argumentation theory and informal logic.
Offers an English translation and in-depth commentary on the ten extant books of Diophantus of Alexandria's Arithmetica.
This volume contains English translations of Goedel's chapters on logicism and the antinomies and on the calculi of pure logic, as well as outlines for a chapter on metamathematics. It also comprises most of his reading notes. This book is a testimony to Goedel's understanding of the situation of foundational research in mathematics after his great discovery, the incompleteness theorem of 1931. It is also a source for his views on his logical predecessors, from Leibniz, Frege, and Russell to his own times. Goedel's "own book on foundations," as he called it, is essential reading for logicians and philosophers interested in foundations. Furthermore, it opens a new chapter to the life and achievement of one of the icons of 20th century science and philosophy.
One of the only volumes that brings the humanities, social sciences and even the natural sciences under one remit to look at how they can be researched in an integrated and useful way, with policy and real world implications in terms of how we relate in and to the world. Interdisciplinarity and Transdisciplinarity have been around for a long time, but as as we move through a digital age they are becoming more and more important and interesting to the scholarly community and beyond. There is nothing on the market that pulls all of these subjects across disciplines together and works out a framework to construct the analysis in a way that asks and answers useful questions.
Mathematical Recreations from the Tournament of the Towns contains the complete list of problems and solutions to the International Mathematics Tournament of the Towns from Fall 2007 to Spring 2021. The primary audience for this book is the army of recreational mathematicians united under the banner of Martin Gardner. It should also have great value to students preparing for mathematics competitions and trainers of such students. This book also provides an entry point for students in upper elementary schools. Features Huge recreational value to mathematics enthusiasts Accessible to upper-level high school students Problems classified by topics such as two-player games, weighing problems, mathematical tasks etc. |
![]() ![]() You may like...
The Scientific Counter-Revolution - The…
Michael John Gorman
Hardcover
R3,468
Discovery Miles 34 680
Knowledge, Number and Reality…
Nils Kurbis, Bahram Assadian, …
Hardcover
R3,126
Discovery Miles 31 260
|