![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Railway technology & engineering
Originally published in 1979, this volume is an invaluable study of a railway system and its adjustment to changing political-geographical conditions, as well as changes in economic and social geography. Each change in the territorial extent or in the internal territorial-administrative organisation of Germany has had its repercussions upon the spatial pattern of the country’s economy and consequently upon the demand for transport. Furthermore, the central position of Germany within the continent has given an added importance to the role of its railways in the overall pattern of the European railway system. For the transport geographer the comparisons and contrasts with the British railway system are particularly insightful.
This book focuses on the needs of railway operators in terms of wireless communications, divided in two main categories: the commercial services and the operational needs. Then, all available technologies that can be used to provide Internet access on board trains and all the other operational applications requiring high capacity are detailed. Finally, challenges and trends in railway telecommunications are highlighted, through the presentation of the future and emerging technologies, the current discussions and works in the different authorities, and the key challenges and scientific barriers.
This book on the dynamics of rail vehicles is developed from the manuscripts for a class with the same name at TU Berlin. It is directed mainly to master students with pre-knowledge in mathematics and mechanics and engineers that want to learn more. The important phenomena of the running behaviour of rail vehicles are derived and explained. Also recent research results and experience from the operation of rail vehicles are included. One focus is the description of the complex wheel-rail contact phenomena that are essential to understand the concept of running stability and curving. A reader should in the end be able to understand the background of simulation tools that are used by the railway industry and universities today.
Examines all the major types of mechatronic systems used in railway applications Surveys rail vehicle mechatronic design processes with practical sources and references Outlines modelling approaches for rail vehicles, from concept to finishined prototype Analyzes system integration of complex railway mechatronic systems Presents numerical experiments and mechatronic models with railway transport applications
This book addresses the current development status of high-speed railways globally and analyzes their operational schemes and practices under emergent conditions. It covers methods and problem-solving philosophy with regard to complexity analysis, capacity evaluation, passenger-flow forecasts, operating strategies, passenger-flow allocation, resource allocation and supporting technologies in the context of serious accidents and adverse environmental influences on train operation and service organization of high-speed railways. The abnormal scenarios, emergent conditions, adverse events and corresponding theoretical and applicational solutions dealing with the train operation both in line and network scale are all from real-world cases related to and designed for Chinese high-speed railway network which is the largest in scale, the highest in complexity and the most difficult in tackling with the complex and diverse climate and geographical environment , and thus makes the book both theoretically rigorous and practically applicable. It not only helps readers consider the train and network interactions from the perspective of complexity science, but also provides them with a philosophical framework and approaches available to construct their own roadmap and problem-solving paradigms in their daily research or management. This book is suitable for researchers, postgraduates and managerial and engineering practitioners in railway-related fields, especially in high-speed railway operation and emergency management.
Innovations in Road, Railway and Airfield Bearing Capacity - Volume 1 comprises the first part of contributions to the 11th International Conference on Bearing Capacity of Roads, Railways and Airfields (2022). In anticipation of the event, it unveils state-of-the-art information and research on the latest policies, traffic loading measurements, in-situ measurements and condition surveys, functional testing, deflection measurement evaluation, structural performance prediction for pavements and tracks, new construction and rehabilitation design systems, frost affected areas, drainage and environmental effects, reinforcement, traditional and recycled materials, full scale testing and on case histories of road, railways and airfields. This edited work is intended for a global audience of road, railway and airfield engineers, researchers and consultants, as well as building and maintenance companies looking to further upgrade their practices in the field.
Railway Transportation Systems covers the entire range of railway passenger systems, from conventional and high-speed intercity systems to suburban, regional, operating on steep gradients, and urban ones. It also examines in depth freight railway systems transporting conventional loads, heavy loads, and dangerous goods. For each system, the text provides a definition; an overview of its evolution and examples of good practice; the main design, construction, and operational characteristics; and the preconditions for its selection. Additionally, it offers a general overview of safety, interfaces with the environment, forces acting on the track, and techniques that govern the stability and guidance of railway vehicles. This new edition brings two new chapters. One concerns pre-feasibility studies of urban rail projects, and the other analyses the operation of railway systems under specific weather conditions and natural phenomena. New material examines dilemmas, trends and innovations in rail freight transportation; a new definition for high-speed rail; a number of case studies; and an update of cutting-edge technologies. It is ideal for graduate students, engineers, consultants, manufacturers, and transport company executives who need a reference and guide.
This is the first book to offer a complete spectrum of the role that operations research has played and can play in the improvement of North American freight railroads. It explores how decisions are made at railroads, contains examples of the mathematical programming formulations to the complex problems, and provides insights into real-world applications. The handbook is divided into eleven chapters, covering topics including scheduling problems, empty railcar distribution, and intermodal rail. These topics have been specifically selected to offer a thorough examination of the application of operations research at freight railroads. The chapters are written by recognized award-winning scholars and practitioners with a deep knowledge and understanding of their specific topics. The Handbook of Operations Research Applications at Railroads is an ideal resource for academics, experienced researchers, and consultants in the field.
The rail network plays an essential role in transport infrastructure worldwide. A ballasted track is commonly used for several reasons, including economic considerations, load bearing capacity, rapid drainage and ease of maintenance. Given the ever-increasing demand for trains to carry heavier axle loads at greater speeds, traditional design and construction must undergo inevitable changes for sustainable performance. Ballast is an unbounded granular assembly that displaces when subjected to repeated train loading affecting track stability. During heavy haul operations, ballast progressively deteriorates and the infiltration of fluidized fines (mud pumping) from the underlying substructure and subgrade decreases its shear strength and also impedes drainage, while increasing track deformation and associated maintenance. Features: serves as a useful guide to assist the practitioner in new track design as well as remediating existing tracks. research discussed in this book has made considerable impact on the railway industry. resulting from collaborative research between academia and industry, incorporating sophisticated laboratory tests, computational modelling and field studies. This book presents a comprehensive procedure for the design of ballasted tracks based on a rational approach that combines extensive laboratory testing, computational modelling and field measurements conducted over the past two decades. Ballast Railroad Design: SMART-UOW Approach will not only become an imperative design aid for rail practitioners, but will also be a valuable resource for postgraduate students and researchers alike in railway engineering.
The role of railways in urban development is the subject of this book. The central aim is to inquire into how especially the development of high-speed rail and light rail links will affect European cities. The analyses are carried out with special attention given to the broader institutional environment of the railway system, including the shift toward privatised railway companies and internationalisation.
North America faces a transportation crisis. Gas-guzzling SUVs clog the highways and air travelers face delays, cancellations, and uncertainty in the wake of unprecedented terrorist attacks. New Departures closely examines the options for improving intercity passenger trains' capacity to move North Americans where they want to go. While Amtrak and VIA Rail Canada face intense pressure to transform themselves into successful commercial enterprises, Anthony Perl demonstrates how public policy changes lie behind the triumphs of European and Japanese high-speed rail passenger innovations. Perl goes beyond merely describing these achievements, translating their implications into a North American institutional and political context and diagnosing the obstacles that have made renewing passenger trains so much more difficult in North America than elsewhere. New Departures links the lessons behind rail passenger revitalization abroad with the opportunity to recast the policies that constrain Amtrak and VIA Rail from providing efficient and effective intercity transportation.
Dynamic Analysis of High-Speed Railway Alignment: Theory and Practice elaborates on the dynamic analysis theory and method on spatial alignment parameters of high-speed railways, revealing the interaction mechanism between vehicle-track dynamic performance and track parameters of high-speed railways. It ascertains the influence rules of track structure and track geometry on vehicle-track dynamic performance, establishes the relationship models between vehicle-track dynamic performance and curve dynamic characteristic parameters, and defines the calculation relationship between lateral acceleration of car body on curves and track parameters. This book can be used as a reference book for scientific researchers, engineering technicians and management engaged in railway engineering, and will be very helpful for railway technicians who want to learn more about route planning, design, and construction and maintenance technologies of high-speed railways.
Safety Theory and Technology of High-Speed Train Operation puts forward solutions for train dispatching and signal control. Frequent railway incidents have threatened the safety of rail transport. In 2013, more than 12 trains collided. In the same year, a Spanish train derailed due to speed, and two of China's high-speed trains collided. In 2016, Germany and Italy both experienced serious train collisions. Global railway security is essential. Many accidents are caused by train dispatching errors and signal system failure. Chinese high-speed railway has developed very quickly and at a very large scale. However, many issues reagrding safety has not been addressed. This book considers the issue from the perspective of a system. A train operation control system structure is put forward in order to ensure safety. Five key technologies (namely system-level fail-safe, parallel monitoring, completeness of train control data, data sharing and fusion and prevention of common errors in monitoring), are proposed. In order to prevent collision, over-speed, derailment, and rear-end collision accidents, the concept and corresponding parallel monitoring technology of five core control items (train route, speed, tracking interval, temporary speed limit, train running state) is proposed.
Principles of Railway Location and Design examines classification and classing methods of railway networks and expresses theories and methods of railway route selection and design. Railway networks represent modal transfer, which significantly alleviates traffic congestion and pollution The book introduces capacity enhancing methods for existing railways and implementation plans and technical conditions for improving existing passenger railways, building new high speed railways and developing heavy haul railways. The book covers ten areas of unfavorable geological conditions including slide areas, debris flow areas and earthquake areas. Practical solutions with detailed presentations have been provided. This valuable reference book summarizes and extracts the high speed railway route selection design. The book covers basic principles and methods by referring to research data of high speed railway technology in China and other countries, as well as engineering practice data.
The dynamic behaviour of bridges strongly affects the infrastructure system of high-speed railways, and is a crucial factor in safety issues and passenger comfort. Dynamics of High-Speed Railway Bridges covers the latest research in this field, including: a " Recently developed dynamic analysis techniques; a " Train excitations; a " Design issues for high-speed railway bridges a " Fatigue conduct of viaducts and large span bridges; a " Bridge dynamic behaviour; a " Case studies. Dynamics of High-Speed Railway Bridges will be invaluable to professionals, scientists, public institutions and students involved in the design, construction and maintenance of high-speed railway bridges.
With the increasing demands for safer freight trains operating with higher speed and higher loads, it is necessary to implement methods for controlling longer, heavier trains. This requires a full understanding of the factors that affect their dynamic performance. Simulation techniques allow proposed innovations to be optimised before introducing them into the operational railway environment. Coverage is given to the various types of locomotives used with heavy haul freight trains, along with the various possible configurations of those trains. This book serves as an introductory text for college students, and as a reference for engineers practicing in heavy haul rail network design,
Great Britain not only invented the main-line railway but has also led the way in it's preservation - not just locomotves and carriages but also the buildings and structures that bear witness to the confidence of railway developers, architects and engineers. This book defines the nature of the railway heritage - from signalboxes, viaducts, tunnels and locomotive depots - and then discusses priorities and the best practice for it's conservation. The subject is a strongly topical one due to current concern over privatization, the effects of planned high-speed rail links and lively debates concerning the role of the enthusiast in railway preservation.
Links Geotechnics with Railway Track Engineering and Railway Operation Good railway track and railway operations depend on good geotechnics, in several different ways and at varying levels. Railway Geotechnics covers track, track substructure, load environment, materials, mechanics, design, construction, measurements, and management. Illustrated by case studies, with an emphasis on the geotechnical aspects of railway engineering, it discusses these topics from a historical perspective. It also presents the methodologies and best practices developed over the past 20 years. Written by Four Experienced Professionals This book: Emphasizes the practical aspects and best practices for railway track and substructure Contains guidelines for design, construction, and maintenance of railway track and substructure Provides many examples and case studies Railway Geotechnics is written primarily for professionals and graduate students, and begins with the fundamentals and basic principles, leading in to practical applications. The authors bring considerable experience and expertise, with many years of research and development, academia, railway operations, and consulting.
With rapid population explosion, improving rail transit speed and capacity is strongly desirable around the world. Communication-based train control (CBTC) is an automated train control system using high capacity bidirectional train-ground communications to ensure the safe operation of rail vehicles. This book presents the latest advances in CBTC research. The contributed chapters from leading experts in the field cover different aspects of modelling, analysis, design, testing, management, deployment, and optimization of CBTC systems. Advances in Communications-Based Train Control Systems begins with the background and evolution of train signaling/train control systems. It introduces the main features and architecture of CBTC systems and describes current challenges and successful implementations around the world. Subsequent contributed chapters discuss such key research areas as Nondestructive testing techniques that can be employed to inspect rails and fastening parts New wireless channel modelling techniques for underground tunnels and viaducts Advanced wireless communication systems to improve CBTC communication availability Schemes to integrate train control and train-ground communications by modelling the control system of a group of trains in CBTC as a networked control system Use of cognitive control to improve train control performance, considering both train-ground communication and train control The book includes many supporting illustrations and tables along with a valuable set of references at the end of each chapter. With this book, researchers and practitioners will be well-equipped to advance the research and development in this important field.
The powertrain is at the heart of vehicle design; the engine - whether it is a conventional, hybrid or electric design - provides the motive power, which is then managed and controlled through the transmission and final drive components. The overall powertrain system therefore defines the dynamic performance and character of the vehicle. The design of the powertrain has conventionally been tackled by analyzing each of the subsystems individually and the individual components, for example, engine, transmission and driveline have received considerable attention in textbooks over the past decades. The key theme of this book is to take a systems approach - to look at the integration of the components so that the whole powertrain system meets the demands of overall energy efficiency and good drivability. "Vehicle Powertrain Systems" provides a thorough description and analysis of all the powertrain components and then treats them together so that the overall performance of the vehicle can be understood and calculated. The text is well supported by practical problems and worked examples. Extensive use is made of the MATLAB(R) software and many example programmes for vehicle calculations are provided in the text. Key features: Structured approach to explaining the fundamentals of powertrain engineeringIntegration of powertrain components into overall vehicle designEmphasis on practical vehicle design issuesExtensive use of practical problems and worked examplesProvision of MATLAB(R) programmes for the reader to use in vehicle performance calculations This comprehensive and integrated analysis of vehicle powertrain engineering provides an invaluable resource for undergraduate and postgraduate automotive engineering students and is a useful reference for practicing engineers in the vehicle industry
This book reflects the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation, which covers abundant state-of-the-art research theories and ideas. As a vital field of research that is highly relevant to current developments in a number of technological domains, the subjects it covered include intelligent computing, information processing, Communication Technology, Automatic Control, etc. The objective of the proceedings is to provide a major interdisciplinary forum for researchers, engineers, academicians as well as industrial professionals to present the most innovative research and development in the field of rail transportation electrical and information technologies. Engineers and researchers in academia, industry, and the government will also explore an insight view of the solutions that combine ideas from multiple disciplines in this field. The volumes serve as an excellent reference work for researchers and graduate students working on rail transportation, electrical and information technologies.
Keep Up with Advancements in the Field of Rail Vehicle Design A thorough understanding of the issues that affect dynamic performance, as well as more inventive methods for controlling rail vehicle dynamics, is needed to meet the demands for safer rail vehicles with higher speed and loads. Design and Simulation of Rail Vehicles examines the field of rail vehicle design, maintenance, and modification, as well as performance issues related to these types of vehicles. This text analyzes rail vehicle design issues and dynamic responses, describes the design and features of rail vehicles, and introduces methods that address the operational conditions of this complex system. Progresses from Basic Concepts and Terminology to Detailed Explanations and Techniques Focused on both non-powered and powered rail vehicles-freight and passenger rolling stock, locomotives, and self-powered vehicles used for public transport-this book introduces the problems involved in designing and modeling all types of rail vehicles. It explores the applications of vehicle dynamics, train operations, and track infrastructure maintenance. It introduces the fundamentals of locomotive design, multibody dynamics, and longitudinal train dynamics, and discusses co-simulation techniques. It also highlights recent advances in rail vehicle design, and contains applicable standards and acceptance tests from around the world. * Includes multidisciplinary simulation approaches * Contains an understanding of rail vehicle design and simulation techniques * Establishes the connection between theory and many simulation examples * Presents simple to advanced rail vehicle design and simulation methodologies Design and Simulation of Rail Vehicles serves as an introductory text for graduate or senior undergraduate students, and as a reference for practicing engineers and researchers investigating performance issues related to these types of vehicles.
Rapid advancements in train control and in-cab technologies provide significant opportunities for rail operators to improve efficiency and enhance their operations. New technologies often provide elegant solutions to existing problems or new capabilities for the operator. However, new technologies may also represent a significant form of risk. Thus, it is important to balance the potential for significant improvement with justifiable concern about how the technology may unpredictably change the nature of the work. If a technology is designed and implemented without considering the substantive human factors concerns, that technology may lead to unintended consequences that can introduce safety issues and disrupt network performance. It is important to note that even a well-designed and beneficial technology may be rejected by the users who see it as a threat to their jobs, status or working conditions. This book discusses the issues surrounding rail technology and introduces a 'toolkit' of human factors evaluation methods. The toolkit provides a practical and operationally focused set of methods that can be used by managers considering investing in technology, staff charged with implementing a technology, and consultants engaged to assist with the design and evaluation process. This toolkit can help to ensure that new rail technologies are thoughtfully designed, effectively implemented, and well received by users so that the significant investment associated with developing rail technologies is not wasted.
1. Covers the latest advances in CBTC research in On-board components locomotive messaging system, GPS sensors, communications Wayside and switching network 2. Proposes architecture and methodology using data fusion technique 3. Explores new wireless sensor integrated modeling techniques for tracking train in satellite visible and low satellite visible environment |
You may like...
Railway Engineering Design & Operation
Giorgio Passerini, J M Mera, …
Paperback
R2,061
Discovery Miles 20 610
Optimization Models for Rail Car Fleet…
Milos Milenkovic, Nebojsa Bojovic
Paperback
|