![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Production engineering > Reliability engineering
For some systems, such as aircraft, submarines, military systems and aerospace systems, it is extremely important to avoid failure during actual operation because it is dangerous and disastrous. The study of various maintenance policies and models in order to improve system reliability, to prevent the occurrence of system failure, and to reduce maintenance costs is an important area in reliability engineering. Proper maintenance techniques have been emphasized in recent years due to the increased safety and reliability requirements of systems, and the increased complexity and rising costs of material and labor. Based on the authorsa (TM) research, Reliability and Optimal Maintenance presents the latest theories and methods of reliability and maintenance with an emphasis on multi-component systems, while also considering the current hot topics in reliability and maintenance including: imperfect repair, economic dependence and opportunistic maintenance, and correlated failure and repair. Software reliability and maintenance cost, and warranty cost considerations are also considered. Postgraduates, researchers, and practitioners in reliability engineering, maintenance engineering, operations research, industrial engineering, mechanical engineering, logistics, management, and statistics will find this book a state-of-the-art survey of reliability and maintenance theory and models.
This is the first book which exploits concepts and tools of global nonlinear dynamics for bridging the gap between theoretical and practical stability of systems/structures, and for possibly enhancing the engineering design in macro-, micro- and nano-mechanics. Addressed topics include complementing theoretical and practical stability to achieve load carrying capacity; dynamical integrity for analyzing global dynamics, for interpreting/predicting experimental behavior, for getting hints towards engineering design; techniques for control of chaos; response of uncontrolled and controlled system/models in applied mechanics and structural dynamics by also considerung the effect of system imperfections; from relatively simple systems to multidimensional models representative of real world applications; potential and expected impact of global dynamics for engineering design.
"Evaluating Measurement Accuracy, 2nd Edition" is intended for those who are concerned with measurements in any field of science or technology. It reflects the latest developments in metrology and offers new results, but is designed to be accessible to readers at different levels: scientists who advance the field of metrology, engineers and experimental scientists who use measurements as tool in their professions, students and graduate students in natural sciences and engineering, and, in parts describing practical recommendations, technicians performing mass measurements in industry, quality control, and trade. This book presents material from the practical perspective and offers solutions and recommendations for problems that arise in conducting real-life measurements. This new edition adds a method for estimating accuracy of indirect measurements with independent arguments, whose development Dr. Rabinovich was able to complete very recently. This method, which is called the Method of Enumeration, produces estimates that are no longer approximate, similar to the way the method of reduction described in the first edition removed approximation in estimating uncertainty of indirect measurements with dependent arguments. The method of enumeration completes addressing the range of problems whose solutions signify the emergence of the new theory of accuracy of measurements. A new method is added for building a composition of histograms, and this method forms a theoretical basis for the method of enumeration.Additionally, as a companion to this book, a concise practical guide that assembles simple step-by-step procedures for typical tasks the practitioners are likely to encounter in measurement accuracy estimation is available at SpringerLink.
Failure of components or systems must be prevented by both designers and operators of systems, but knowledge of the underlying mechanisms is often lacking. Since the relation between the expected usage of a system and its failure behavior is unknown, unexpected failures often occur, with possibly serious financial and safety consequences. Principles of Loads and Failure Mechanisms. Applications in Maintenance, Reliability and Design provides a complete overview of all relevant failure mechanisms, ranging from mechanical failures like fatigue and creep to corrosion and electric failures. Both qualitative and quantitative descriptions of the mechanisms and their governing loads enable a solid assessment of a system's reliability in a given or assumed operational context. Moreover, a unique range of applications of this knowledge in the fields of maintenance, reliability and design are presented. The benefits of understanding the physics of failure are demonstrated for subjects like condition monitoring, predictive maintenance, prognostics and health management, failure analysis and reliability engineering. Finally, the role of these mechanisms in design processes and design for maintenance are illustrated.
This book introduces a new notion of replacement in maintenance and reliability theory. Replacement Overtime, where replacement is done at the first completion of a working cycle over a planned time, is a new research topic in maintenance theory and also serves to provide a fresh optimization technique in reliability engineering. In comparing replacement overtime with standard and random replacement techniques theoretically and numerically, 'Maintenance Overtime Policies in Reliability Theory' highlights the key improvements to be gained by adopting this new approach and shows how they can be applied to inspection policies, parallel systems and cumulative damage models. Utilizing the latest research in replacement overtime by internationally recognized experts, the reader will be introduced to new topics and methods, and learn how to apply this knowledge practically to actual reliability models. This book will serve as an essential guide to a new subject of study for graduate students and researchers and also provides a useful guide for reliability engineers and managers who have difficulties in maintenance of computer and production systems with random working cycles.
This title examines the concepts of systems reliability and the techniques available for determining both 'technical' and 'human' hazard and risk. Emphasis is placed on technical systems and human factors and the increasing importance of psychological factors in the overall assessment of safety. This edition includes material that reflects the fact that the tool of Risk Assessment has been taken up by many industrial and commercial sectors since the first edition.
Nonparametric statistics has probably become the leading methodology for researchers performing data analysis. It is nevertheless true that, whereas these methods have already proved highly effective in other applied areas of knowledge such as biostatistics or social sciences, nonparametric analyses in reliability currently form an interesting area of study that has not yet been fully explored. "Applied Nonparametric Statistics in Reliability" is focused on the use of modern statistical methods for the estimation of dependability measures of reliability systems that operate under different conditions. The scope of the book includes: smooth estimation of the reliability function and hazard rate of non-repairable systems; study of stochastic processes for modelling the time evolution of systems when imperfect repairs are performed; nonparametric analysis of discrete and continuous time semi-Markov processes; isotonic regression analysis of the structure function of a reliability system, and lifetime regression analysis. Besides the explanation of the mathematical background, several numerical computations or simulations are presented as illustrative examples. The corresponding computer-based methods have been implemented using R and MATLAB(R). A concrete modelling scheme is chosen for each practical situation and, in consequence, a nonparametric inference procedure is conducted. "Applied Nonparametric Statistics in Reliability" will serve the practical needs of scientists (statisticians and engineers) working on applied reliability subjects.
Fatigue and Fracture Reliability Engineering is an attempt to present an integrated and unified approach to reliability determination of fatigue and fracture behaviour, incorporating probability, statistics and other related areas. A series of original and practical approaches, are suggested in Fatigue and Fracture Reliability Engineering, including new techniques in determining fatigue and fracture performances. It also carries out an investigation into static and fatigue properties, and into the failure mechanisms of unnotched and notched CFR composite laminates with different lay-ups to optimize the stacking sequence effect. Further benefits include: a novel convergence-divergence counting procedure to extract all load cycles from a load history of divergence-convergence waves; practical scatter factor formulae to determine the safe fatigue crack initiation and propagation lives from the results of a single full-scale test of a complete structure; and a nonlinear differential kinetic model for describing the dynamical behaviour of an atom at a fatigue crack tip. Fatigue and Fracture Reliability Engineering is intended for practising engineers in marine, civil construction, aerospace, offshore, automotive and chemical industries. It is also useful reading for researchers on doctoral programmes, and is appropriate for advanced undergraduate and postgraduate programmes in any mechanically-oriented engineering discipline.
The 6th meeting sponsored by IFIP Working Group 7.5, on reliability and optimization of structural systems, took place in September 1994 in Assisi, Italy. This book contains the papers presented at the working conference including topics such as reliability of special structures, fatigue, failure modes and time-variant systems relibility.
This book is intended to give a general overview of reliability, faults, fault models, nanotechnology, nanodevices, fault-tolerant architectures and reliability evaluation techniques. Additionally, the book provides an in depth state-of-the-art research results and methods for fault tolerance as well as the methodology for designing fault-tolerant systems out of highly unreliable components.
Examines all important aspects of integrated circuit design, fabrication, assembly and test processes as they relate to quality and reliability. This second edition discusses in detail: the latest circuit design technology trends; the sources of error in wafer fabrication and assembly; avenues of contamination; new IC packaging methods; new in-line process monitors and test structures; and more.;This work should be useful to electrical and electronics, quality and reliability, and industrial engineers; computer scientists; integrated circuit manufacturers; and upper-level undergraduate, graduate and continuing-education students in these disciplines.
Particulate products make up around 80% of chemical products, from all industry sectors. Examples given in this book include the construction materials, fine ceramics and concrete; the delicacies, chocolate and ice cream; pharmaceutical, powders, medical inhalers and sun screen; liquid and powder paints. Size distribution and the shape of the particles provide for different functionalities in these products. Some functions are general, others specific. General functions are powder flow and require at the typical particulate concentrations of these products that the particles cause adequate rheological behavior during processing and/or for product performance. Therefore, this book addresses particle packing as well as its relation to powder flow and rheological behavior. Moreover, general relationships to particle size are discussed for e.g. color and sensorial aspects of particulate products. Product-specific functionalities are often relevant for comparable product groups. Particle size distribution and shape provide, for example, the following functionalities: - dense particle packing in relation to sufficient strength is required in concrete construction, ceramic objects and pharmaceutical tablets - good sensorial properties (mouthfeel) to chocolate and ice cream - effective dissolution, flow and compression properties for pharmaceutical powders - adequate hiding power and effective coloring of paints for protection and the desired esthetical appeal of the objects - adequate protection of our body against sun light by sunscreen - effective particle transport and deposition to desired locations for medical inhalers and powder paints. Adequate particle size distribution, shape and porosity of particulate products have to be achieved in order to reach optimum product performance. This requires adequate management of design and development as well as sufficient knowledge of the underlying principles of physics and chemistry. Moreover, flammability, explosivity and other health hazards from powders, during handling, are taken into account. This is necessary, since great risks may be involved. In all aspects, the most relevant parameters of the size distribution (and particle shape) have to be selected. In this book, experts in the different product fields have contributed to the product chapters. This provides optimum information on what particulate aspects are most relevant for behavior and performance within specified industrial products and how optimum results can be obtained. It differs from other books in the way that the critical aspects of different products are reported, so that similarities and differences can be identified. We trust that this approach will lead to improved optimization in design, development and quality of many particulate products."
This text gives a detailed description of practical risk and safety analysis methods, tried and tested in over 100 process industry projects. The aim is to provide the methods and data needed by practicing safety engineers, as well as practical advice on how to use them. Subjects covered are risk acceptability, hazard identification methods, probability and frequency calculation, human error, failure rate data, fire explosion and gas dispersion, emergency action, integrated risk analysis and safety management. Road and ship transport, risk analysis methods and environmental risk analysis, are special topics covered. Several of the methods described have been developed in order to solve special problems, such as identifying operator errors and assessing emergency plans.
This book comprises select proceedings of the international conference ETAEERE 2020, and focuses on contemporary issues in energy management and energy efficiency in the context of power systems. The contents cover modeling, simulation and optimization based studies on topics like medium voltage BTB system, cost optimization of a ring frame unit in textile industry, rectenna for RF energy harvesting, ecology and energy dimension in infrastructural designs, study of AGC in two area hydro thermal power system, energy-efficient and reliable depth-based routing protocol for underwater wireless sensor network, and power line communication. This book can be beneficial for students, researchers as well as industry professionals.
This book shows how to build in and assess reliability, availability, maintainability, and safety (RAMS) of components, equipment, and systems. It presents the state of the art of reliability (RAMS) engineering, in theory & practice, and is based on over 30 years author's experience in this field, half in industry and half as Professor of Reliability Engineering at the ETH, Zurich. The book structure allows rapid access to practical results. Methods & tools are given in a way that they can be tailored to cover different RAMS requirement levels. Thanks to Appendices A6 - A8 the book is mathematically self-contained, and can be used as a textbook or as a desktop reference with a large number of tables (60), figures (210), and examples / exercises^ 10,000 per year since 2013) were the motivation for this final edition, the 13th since 1985, including German editions. Extended and carefully reviewed to improve accuracy, it represents the continuous improvement effort to satisfy reader's needs and confidence. New are an introduction to risk management with structurally new models based on semi-Markov processes & to the concept of mean time to accident, reliability & availability of a k-out-of-n redundancy with arbitrary repair rate for n - k=2, 10 new homework problems, and refinements, in particular, on multiple failure mechanisms, approximate expressions, incomplete coverage, data analysis, and comments on e, MTBF, MTTF, MTTR, R, PA.
This volume presents selected papers presented during the 16th International Conference on Humanizing Work and Work Environment (HWWE 2018). The book presents a confluence of ideas on ergonomics and technology implementation to improve workplace environments and work systems to maximize effectiveness and performance. The volume is thematically arranged, with papers covering different aspects of ergonomics and design. The volume will be of use to researchers, practitioners and students working in different fields of ergonomics.
This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support for electrical and electronics engineering students and professionals, bridging academic curriculum with industrial expectations.
This book discusses the theory, method and application of non-Gaussian random vibration fatigue analysis and test. The main contents include statistical analysis method of non-Gaussian random vibration, modeling and simulation of non-Gaussian/non-stationary random vibration, response analysis under non-Gaussian base excitation, non-Gaussian random vibration fatigue life analysis, fatigue reliability evaluation of structural components under Gaussian/non-Gaussian random loadings, non-Gaussian random vibration accelerated test method and application cases. From this book, the readers can not only learn how to reproduce the non-Gaussian vibration environment actually experienced by the product, but also know how to evaluate the fatigue life and reliability of the structure under non-Gaussian random excitation.
Following my graduation in physical organic chemistry at the University of Amst- dam, I started to work at the Royal Dutch Shell Laboratories in Amsterdam. My first assignment was research in the field of detergents and industrial chemicals. It was followed by development work on thermal wax cracking for production of C - C 2 14 olefins and on acid-catalyzed synthesis of carboxylic acids from C - C olefins. 3 6 Then, I made a significant change to analytical chemistry, first at Shell's process development department and later in the chemical engineering department of Delft University of Technology. In both departments, there was a large variety of analy- cal techniques and development of new methods for automated analysis of small process streams. It was the time that gas chromatography conquered the world. In this field, a firm basis was given by Henk Boer, Arie Kwantes and Frits Zuiderweg at Shell Research Laboratories in Amsterdam, both for packed and for capillary c- umns. The potential of gas chromatography was huge and, therefore, also in Delft, its use increased enormously. Moreover, the growth of this technique was facilitated significantly by the rapidly developing electronics industry. It not only led to digital peak integrators and personal computers but also enabled complex measurement techniques. In addition, I became involved in surface area and porosity characteri- tion of catalysts and adsorbents, on which topic the research had been initiated by Prof. J. H. de Boer.
Proceedings of the Advanced Seminar held at the Joint Research Centre, Ispra, Italy, June 4-8, 1984
Modern society depends heavily upon a host of systems of varying complexity to perform the services required. The importance of reliability assumes new dimensions, primarily because of the higher cost of these highly complex machines required by mankind and the implication of their failure. This is why all industrial organizations wish to equip their scientists, engineers, managers and administrators with a knowledge of reliability concepts and applications. Based on the author's 20 years experience as reliability educator, researcher and consultant, Reliability Engineering introduces the reader systematically to reliability evaluation, prediction, allocation and optimization. It also covers further topics, such as maintainability and availability, software reliability, economics of reliability, reliability management, reliability testing, etc. A reliability study of some typical systems has been included to introduce the reader to the practical aspects. The book is intended for graduate students of engineering schools and also professional engineers, managers and reliability administrators as it has a wide coverage of reliability concepts.
'Sustainment' (as commonly defined by industry and government), is comprised of maintenance, support, and upgrade practices that sustain or improve the performance of a system and maximize the availability of goods and services while minimizing their cost and footprint or, more simply, the capacity of a system to endure. Sustainment is a multi-trillion-dollar enterprise for critical systems, in both government (infrastructure and defense) and industry (transportation, industrial controls, data centers, and energy generation).This book is a mix of engineering, operations research, and policy sciences intended to provide students with a thorough understanding of the concept of sustainability and sustainable product life-cycles, and an appreciation of the importance of sustaining critical systems. It starts from the key attributes for system sustainment that includes data analytics, engineering analysis and the public policy needed to support the development of technologies, processes, and frameworks required for the management of sustainable processes and practices. The specific topics covered include: acquisition of critical systems, reliability, maintenance, availability, readiness, inventory management, supply-chain management and risks, contracting for sustainment, and various analysis methodologies (discounted cash flow analysis, discrete-event simulation and Monte Carlo methods). Practice problems are included at the end of each chapter.
Complex System Reliability presents a state-of-the-art treatment of complex multi-channel system reliability assessment and provides the requisite tools, techniques and algorithms required for designing, evaluating and optimizing ultra-reliable redundant systems. Critical topics that make Complex System Reliability a unique and definitive resource include: * redundant system analysis for k-out-of-n systems (including complex systems with embedded k-out-of-n structures) involving both perfect and imperfect fault coverage; * imperfect fault coverage analysis techniques, including algorithms for assessing the reliability of redundant systems in which each element is subject to a given coverage value (element level coverage) or in which the system uses voting to avoid the effects of a failed element (fault level coverage); and * state-of-the-art binary decision diagram analysis techniques, including the latest and most efficient algorithms for the reliability assessment of large, complex redundant systems. This practical presentation includes numerous fully worked examples that provide detailed explanations of both the underlying design principles and the techniques (such as combinatorial, recursive and binary decision diagram algorithms) used to obtain quantitative results. Many of the worked examples are based on the design of modern digital fly-by-wire control system technology. Complex System Reliability provides in-depth coverage of systems subject to either perfect or imperfect fault coverage and also the most recent techniques for correctly assessing the reliability of redundant systems that use mid-value-select voting as their primary means of redundancy management. It is a valuable resource for those involved in the design and reliability assessment of highly reliable systems, particularly in the aerospace and automotive sectors.
This volume highlights the main procedures for assessing the regional risks resulting from dangerous goods storage, and transportation by means of different systems (i.e., road, rail, ship, and pipeline). The information in the book is based on a wide range of references and studies. The main procedural steps involved in quantitative risk analysis for transportation systems are supported by relevant methods of risk assessment, as recognized at an international level. The book gives an overview of the criteria and guidelines applicable to the implementation of risk assessments and management at different stages. Chapter 1 describes the environmental and safety factors to consider when performing a transportation risk analysis for a region. Chapter 2 presents risk definitions and the methodology for analyzing transportation risks in a complex area. Chapter 3 presents general information about truck accidents and their consequences, and reviews the risk presented by road tunnels. Chapter 4 deals with transportation of hazardous materials by rail. Chapter 5 is concerned with the assessment of transportation risks on water ways. Chapter 6 furnishes a description of the transport pipelines for natural gas and petroleum products and describes the situation in Switzerland. Chapter 7 presents a compilation of statistical data related to accidents and the movement of dangerous goods. Chapter 8 is devoted to the description of data bases and computer support for risk assessment. Chapter 9 deals with integrated approaches for regional risk assessment and safety management with special emphasis to the transportation of hazardous materials. Chapter 10 presents several relevant case studies andmiscellaneous information.
This book explores the practical implementation of an advanced after-sales management framework devoted to warranty management. The framework is intended for companies producing either standardized or customized products and such a management tool will facilitate organizational improvement and support innovative decision making processes for technical assistance in after-sales services. After sales Service of Engineering Industrial Assets comprises a proposal for a warranty management framework, with an account of the different methods that can be used to improve decision making in the different stages of the after-sales service management process, and strategies for strengthening the structure and foundations of the framework. A review of the fundamental issues and current research topics in warranty management and after sales services is also provided, which is exemplified by a case study. This book is intended for postgraduates, researchers and engineers who are interested in after sales management, assets engineering and warranty management." |
![]() ![]() You may like...
Advances in System Reliability…
Mangey Ram, J. Paulo Davim
Paperback
Modern Dynamic Reliability Analysis for…
Anatoly Lisnianski, Ilia Frenkel, …
Hardcover
R5,089
Discovery Miles 50 890
Electro-Mechanical Actuators for the…
Mirko Mazzoleni, Gianpietro Di Rito, …
Hardcover
R4,928
Discovery Miles 49 280
Machinery Failure Analysis Handbook…
Luiz Octavio Amaral Affonso
Hardcover
Trends in Industrial Engineering…
Jorge Luis Garcia-Alcaraz, Arturo Realyvasquez Vargas, …
Hardcover
R4,468
Discovery Miles 44 680
|