![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Production engineering > Reliability engineering
The smart grid initiative, integrating advanced sensing technologies, intelligent control methods, and bi-directional communications into the contemporary electricity grid, offers excellent opportunities for energy efficiency improvements and better integration of distributed generation, coexisting with centralized generation units within an active network. A large share of the installed capacity for recent renewable energy sources already comprises insular electricity grids, since the latter are preferable due to their high potential for renewables. However, the increasing share of renewables in the power generation mix of insular power systems presents a significant challenge to efficient management of the insular distribution networks, mainly due to the variability and uncertainty of renewable generation. More than other electricity grids, insular electricity grids require the incorporation of sustainable resources and the maximization of the integration of local resources, as well as specific solutions to cope with the inherent characteristics of renewable generation. Insular power systems need a new generation of methodologies and tools to face the new paradigm of large-scale renewable integration. Smart and Sustainable Power Systems: Operations, Planning, and Economics of Insular Electricity Grids discusses the modeling, simulation, and optimization of insular power systems to address the effects of large-scale integration of renewables and demand-side management. This practical book: Describes insular power systems, renewable energies, uncertainty, variability, reserves, and demand response Examines state-of-the-art forecasting techniques, power flow calculations, and scheduling models Covers probabilistic and stochastic approaches, scenario generation, and short-term operation Includes comprehensive testing and validation of the mathematical models using real-world data Explores electric price signals, competitive operation of distribution networks, and network expansion planning Smart and Sustainable Power Systems: Operations, Planning, and Economics of Insular Electricity Grids provides a valuable resource for the design of efficient methodologies, tools, and solutions for the development of a truly sustainable and smart grid.
Consider a Viable and Cost-Effective Platform for the Industries of the Future (IOF) Benefit from improved safety, performance, and product deliveries to your customers. Achieve a higher rate of equipment availability, performance, product quality, and reliability. Integrated Reliability: Condition Monitoring and Maintenance of Equipment incorporates reliable engineering and mathematical modeling to help you move toward sustainable development in reliability condition monitoring and maintenance. This text introduces a cost-effective integrated reliability growth monitor, integrated reliability degradation monitor, technological inheritance coefficient sensors, and a maintenance tool that supplies real-time information for predicting and preventing potential failures of manufacturing processes and equipment. The author highlights five key elements that are essential to any improvement program: improving overall equipment and part effectiveness, quality, and reliability; improving process performance with maintenance efficiency and effectiveness; training all employees involved; including operators in the daily maintenance and upkeep of the equipment; and implementing early equipment management and maintenance prevention design. He offers a sustainable solution with integrated reliability condition monitoring and maintenance of manufacturing processes, parts, and equipment in the IOFs with a technological inheritance model-based program. This book contains 15 chapters that include details on: Improving the material-part-equipment system life cycle, reliability conditions, and manufacturing process productivity for wear, corrosion, and temperature resistance applications Maximizing the component and system reliability growth of parts and equipment Minimizing reliability degradation within the framework of a condition-based maintenance Analyzing the reliability degradation, wear, and other competing failure modes of nickel-based hard alloy-coated part mating surface with a technological inheritance model-based program Introducing a cost-effective integrated reliability monitor and maintenance strategy with a technological inheritance model-based software program Integrated Reliability: Condition Monitoring and Maintenance of Equipment addresses potential failures from an asset manager, maintenance user, and operator's standpoint, and highlights the solutions to common failures and reliability problems for equipment in the IOFs.
This is the fifth book published within the Ashgate Studies in Resilience Engineering series. The first volume introduced resilience engineering broadly. The second and third volumes established the research foundation for the real-world applications that then were described in the fourth volume: Resilience Engineering in Practice. The current volume continues this development by focusing on the role of resilience in the development of solutions. Since its inception, the development of resilience engineering as a concept and a field of practice has insisted on expanding the scope from a preoccupation with failure to include also the acceptable everyday functioning of a system or an organisation. The preoccupation with failures and adverse outcomes focuses on situations where something goes wrong and the tries to keep the number of such events and their (adverse) outcomes as low as possible. The aim of resilience engineering and of this volume is to describe how safety can change from being protective to become productive and increase the number of things that go right by improving the resilience of the system.
This volume chronicles the 16th Annual Conference on System Engineering Research (CSER) held on May 8-9, 2018 at the University of Virginia, Charlottesville, Virginia, USA. The CSER offers researchers in academia, industry, and government a common forum to present, discuss, and influence systems engineering research. It provides access to forward-looking research from across the globe, by renowned academicians as well as perspectives from senior industry and government representatives. Co-founded by the University of Southern California and Stevens Institute of Technology in 2003, CSER has become the preeminent event for researchers in systems engineering across the globe. Topics include though are not limited to the following: Systems in context: * Formative methods: requirements * Integration, deployment, assurance * Human Factors * Safety and Security Decisions/ Control & Design; Systems Modeling: * Optimization, Multiple Objectives, Synthesis * Risk and resiliency * Collaborative autonomy * Coordination and distributed decision-making Prediction: * Prescriptive modeling; state estimation * Stochastic approximation, stochastic optimization and control Integrative Data engineering: * Sensor Management * Design of Experiments
Reliability-Centered Maintenance provides valuable insights into
current preventive maintenance practices and issues, while
explaining how a transition from the current "preserve equipment"
to "preserve function" mindset is the key ingredient in a
maintenance optimization strategy. This book defines the four
principal features of RCM and describes the nine essential steps to
achieving a successful RCM program.
This volume collects the papers from the World Conference on Acoustic Emission 2017 (WCAE-2017) in Xi'an, China. The latest research and applications of acoustic emission (AE) are explored, with a particular emphasis on detecting and processing AE signals, the development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques. Numerous case studies are also included. This proceedings volume will appeal to students, professors and researchers working in these fields as physicists and/or engineers.
Preparation and Restoration is the second volume of Resilience Engineering Perspectives within the Ashgate Studies in Resilience Engineering series. In four sections, it broadens participation of the field to include policy and organization studies, and articulates aspects of resilience beyond initial definitions: - Policy and Organization explores public policy and organizational aspects of resilience and how they aid or inhibit preparation and restoration - Models and Measures addresses thoughts on ways to measure resilience and model systems to detect desirable, and undesirable, results - Elements and Traits examines features of systems and how they affect the ability to prepare for and recover from significant challenges - Applications and Implications examines how resilience plays out in the living laboratory of real-world operations. Preparation and Restoration addresses issues such as the nature of resilience; the similarities and differences between resilience and traditional ideas of system performance; how systems cope with varying demands and sometimes succeed and sometimes fail; how an organization's ways of preparing before critical events can enable or impede restoration; the trade-offs that are needed for systems to operate and survive; instances of brittle or resilient systems; how work practices affect resilience; the relationship between resilience and safety; and what improves or erodes resilience. This volume is valuable reading for those who create and operate systems that must not only survive, but thrive, in the face of challenge.
In the resilience engineering approach to safety, failures and successes are seen as two different outcomes of the same underlying process, namely how people and organizations cope with complex, underspecified and therefore partly unpredictable work environments. Therefore safety can no longer be ensured by constraining performance and eliminating risks. Instead, it is necessary to actively manage how people and organizations adjust what they do to meet the current conditions of the workplace, by trading off efficiency and thoroughness and by making sacrificing decisions. The Ashgate Studies in Resilience Engineering series promulgates new methods, principles and experiences that can complement established safety management approaches, providing invaluable insights and guidance for practitioners and researchers alike in all safety-critical domains. While the Studies pertain to all complex systems they are of particular interest to high hazard sectors such as aviation, ground transportation, the military, energy production and distribution, and healthcare. Published periodically within this series will be edited volumes titled Resilience Engineering Perspectives. The first volume, Remaining Sensitive to the Possibility of Failure, presents a collection of 20 chapters from international experts. This collection deals with important issues such as measurements and models, the use of procedures to ensure safety, the relation between resilience and robustness, safety management, and the use of risk analysis. The final six chapters utilise the report from a serious medical accident to illustrate more concretely how resilience engineering can make a difference, both to the understanding of how accidents happen and to what an organisation can do to become more resilient.
Risk Analysis for Process Plants, Pipelines and Transport gives a detailed description of practical risk and safety analysis methods, tried and tested in over 100 process industry projects. The aim is to provide the methods and data needed by practising safety engineers, as well as practical advice on how to use them.
An integral part of any engineering or manufacturing process is a continuous process of assessing its safety and reliability. This work provides a guide to the practical application of safety and reliability principles wherever risk is a consideration. The theory and mathematics are kept to a minimum, whilst a practical working model of the technology is presented for everyone involved in general engineering disciplines. It reduces the high cost of using professional consultant practitioners, introduces an advanced methodology of common mode failure analysis and modelling, with potential savings on system capital costs, and provides an illustration of working principles by graded tutorial projects.
This book starts with the basic ideas in uncertainty propagation using Monte Carlo methods and the generation of random variables and stochastic processes for some common distributions encountered in engineering applications. It then introduces a class of powerful simulation techniques called Markov Chain Monte Carlo method (MCMC), an important machinery behind Subset Simulation that allows one to generate samples for investigating rare scenarios in a probabilistically consistent manner. The theory of Subset Simulation is then presented, addressing related practical issues encountered in the actual implementation. The book also introduces the reader to probabilistic failure analysis and reliability-based sensitivity analysis, which are laid out in a context that can be efficiently tackled with Subset Simulation or Monte Carlo simulation in general. The book is supplemented with an Excel VBA code that provides a user-friendly tool for the reader to gain hands-on experience with Monte Carlo simulation. * Presents a powerful simulation method called Subset Simulation for efficient engineering risk assessment and failure and sensitivity analysis * Illustrates examples with MS Excel spreadsheets, allowing readers to gain hands-on experience with Monte Carlo simulation * Covers theoretical fundamentals as well as advanced implementation issues * A companion website is available to include the developments of the software ideas This book is essential reading for graduate students, researchers and engineers interested in applying Monte Carlo methods for risk assessment and reliability based design in various fields such as civil engineering, mechanical engineering, aerospace engineering, electrical engineering and nuclear engineering. Project managers, risk managers and financial engineers dealing with uncertainty effects may also find it useful.
The modeling of mechanical properties of materials and structures is a complex and wide-ranging subject. In some applications, it is sufficient to assume that the material remains elastic, i.e. that the deformation process is fully reversible and the stress is a unique function of strain. However, such a simplified assumption is appropriate only within a limited range, and in general must be replaced by a more realistic approach that takes into account the inelastic processes such as plastic yielding or cracking. This book presents a comprehensive treatment of the most important areas of plasticity and of time-dependent inelastic behavior (viscoplasticity of metals, and creep and shrinkage of concrete). It covers structural aspects such as:
For Resilience Engineering, 'failure' is the result of the adaptations necessary to cope with the complexity of the real world, rather than a breakdown or malfunction. The performance of individuals and organizations must continually adjust to current conditions and, because resources and time are finite, such adjustments are always approximate. This definitive new book explores this groundbreaking new development in safety and risk management, where 'success' is based on the ability of organizations, groups and individuals to anticipate the changing shape of risk before failures and harm occur. Featuring contributions from many of the worlds leading figures in the fields of human factors and safety, Resilience Engineering provides thought-provoking insights into system safety as an aggregate of its various components, subsystems, software, organizations, human behaviours, and the way in which they interact. The book provides an introduction to Resilience Engineering of systems, covering both the theoretical and practical aspects. It is written for those responsible for system safety on managerial or operational levels alike, including safety managers and engineers (line and maintenance), security experts, risk and safety consultants, human factors professionals and accident investigators.
Based on the author's 20 years of teaching, Risk Analysis in Engineering: Techniques, Tools, and Trends presents an engineering approach to probabilistic risk analysis (PRA). It emphasizes methods for comprehensive PRA studies, including techniques for risk management. The author assumes little or no prior knowledge of risk analysis on the part of the student and provides the necessary mathematical and engineering foundations. The text relies heavily on, but is not limited to, examples from the nuclear industry, because that is where PRA techniques were first developed. Since PRA provides a best-estimate approach, the author pays special attention to explaining uncertainty characterization. The book begins with a description of the basic definitions and principles of risk, safety, and performance and presents the elements of risk analysis and their applications in engineering. After highlighting the methods for performing PRAs, the author describes how to assess and measure performance ofthe building blocks of PRAs, such as reliability of hardware subsystems, structures, components, human actions, and software. He covers methods of characterizing uncertainties and methods for propagating them through the PRA model to estimate uncertainties of the results. The book explores how to identify and rank important and sensitive contributors to the estimated risk using the PRA and performance assessment models. It also includes a description of risk acceptance criteria and the formal methods for making decisions related to risk management options and strategies. The book concludes with a brief review of the main aspects, issues, and methods of risk communication. Drawing on notes, homework problems, and exams from courses he has taught as well as feedback from his students, Professor Modarres provides a from-the-trenches method for teaching risk assessment for engineers. This is a textbook that is easy to use for students and professors alike.
This book presents the state-of-the-art methodology and detailed analytical models and methods used to assess the reliability of complex systems and related applications in statistical reliability engineering. It is a textbook based mainly on the author's recent research and publications as well as experience of over 30 years in this field. The book covers a wide range of methods and models in reliability, and their applications, including: statistical methods and model selection for machine learning; models for maintenance and software reliability; statistical reliability estimation of complex systems; and statistical reliability analysis of k out of n systems, standby systems and repairable systems. Offering numerous examples and solved problems within each chapter, this comprehensive text provides an introduction to reliability engineering graduate students, a reference for data scientists and reliability engineers, and a thorough guide for researchers and instructors in the field.
None of the few Design for Reliability (DFR) books currently available addresses the process from the owner's (or buyer's) perspective. Instead, they approach DFR strictly from the seller's (or manufacturer's) viewpoint. As a result, few assets are designed and developed with the intent to meet the future owner's specific needs for reliability, availability, and maintainability over the life of the asset. In this groundbreaking new book, Dan Daley intends to correct the imbalance in how DFR is often implemented by providing owners with the tools they need to ensure that their requirements - not the seller's - are followed in developing new assets. This book will be an invaluable guide to everyone involved in the design, development, or purchase of new assets. It will help owners take the necessary steps to get what they really need, and it will help sellers "deliver the goods" that their customers - the owners - actually want. Explains how to properly integrate DFR activities with conventional design activities. Provides a simple system to ensure DFR activities are completed on time. Provides spreadsheets and forms needed to portray design results in a clear and usable format. Includes the tables and forms needed to support the design processes and procedures presented in each chapter. Includes appendices that provide an example specification that owners can modify when procuring a new asset and example tables useful in assessing how well the DFR process has met the owner's needs. Introduction Differences in Perspectives DFR for the Seller's Business Model DFR for the Owner's Business Model Reliability Analysis Availability Analysis Maintainability Analysis Organizing for Concurrent Engineering Obtaining the Cooperation of the Seller After the Purchase is Completed Conclusion Appendices Index
A unique book that describes the practical processes necessary to achieve failure free equipment performance, for quality and reliability engineers, design, manufacturing process and environmental test engineers. This book studies the essential requirements for successful product life cycle management. It identifies key contributors to failure in product life cycle management and particular emphasis is placed upon the importance of thorough Manufacturing Process Capability reviews for both in-house and outsourced manufacturing strategies. The readers? attention is also drawn to the many hazards to which a new product is exposed from the commencement of manufacture through to end of life disposal.Revolutionary in focus, as it describes how to achieve failure free performance rather than how to predict an acceptable performance failure rate (reliability technology rather than reliability engineering)Author has over 40 years experience in the field, and the text is based on classroom tested notes from the reliability technology course he taught at Massachusetts Institute of Technology (MIT), USA?Contains graphical interpretations of mathematical models together with diagrams, tables of physical constants, case studies and unique worked examples?
Due to global competition, safety regulations, and other factors, manufacturers are increasingly pressed to create products that are safe, highly reliable, and of high quality. Engineers and quality assurance professionals need a cross-disciplinary understanding of these topics in order to ensure high standards in the design and manufacturing processes. Reliability, Quality, and Safety for Engineers is the first publication to integrate this information in a single source. The text begins with an introduction that discusses the need for reliability, quality and safety as well as historical information, terms, and definitions. Subsequent chapters discuss relevant mathematics, evaluation models and methods, testing, management, and costing. The author treats each topic in a comprehensive manner that requires no prior knowledge of the subject in order to understand the contents. The author includes numerous examples, problems, and solutions to test the reader's comprehension. He also lists important journals, organizations, standards, and books for further study, creating a comprehensive resource for design, system, safety and manufacturing engineers as well as reliability specialists and quality assurance professionals.
The collection of papers in this book comprises the proceedings of the 23rd CIRP Design Conference held between March 11th and March 13th 2013 at the Ruhr-Universitat Bochum in Germany. The event was organized in cooperation with the German Academic Society for Product Development WiGeP. The focus of the conference was on -Smart Product Engineering-, covering two major aspects of modern product creation: the development of intelligent ( smart ) products as well as the new ( smart ) approach of engineering, explicitly taking into account consistent systems integration. Throughout the 97 papers contained in these proceedings, a range of topics are covered, amongst them the different facets and aspects of what makes a product or an engineering solution smart . In addition, the conference papers investigate new ways of engineering for production planning and collaboration towards Smart Product Engineering. The publications provide a solid insight into the pressing issues of modern digital product creation facing increasing challenges in a rapidly changing industrial environment. They also give implicit advice how a smart product or engineering solution (processes, methods and tools) needs to be designed and implemented in order to become successful.
Gas and Oil Reliability Engineering: Modeling and Analysis, Second Edition, provides the latest tactics and processes that can be used in oil and gas markets to improve reliability knowledge and reduce costs to stay competitive, especially while oil prices are low. Updated with relevant analysis and case studies covering equipment for both onshore and offshore operations, this reference provides the engineer and manager with more information on lifetime data analysis (LDA), safety integrity levels (SILs), and asset management. New chapters on safety, more coverage on the latest software, and techniques such as ReBi (Reliability-Based Inspection), ReGBI (Reliability Growth-Based Inspection), RCM (Reliability Centered Maintenance), and LDA (Lifetime Data Analysis), and asset integrity management, make the book a critical resource that will arm engineers and managers with the basic reliability principles and standard concepts that are necessary to explain their use for reliability assurance for the oil and gas industry.
Investors and managers of major projects know how often they result in cost overruns and schedule delays. Risk Navigation Strategies for Major Capital Projects builds on conventional best practice to provide a risk-based view of current practices for planning and executing large international projects. As economies of scale continue to drive projects to ever-higher levels of scope and complexity, new thinking about strategy and risk is required. Since major projects are highly exposed to external risks, the traditional view of predictability as something that can be mandated and ensured by rigorous application of conventional best practice has become a myth. Fresh thinking is required to manage projects today, and this book provides a framework for taking project management best practice to the next level. Risk Navigation Strategies for Major Capital Projects is intended for executives investing in major projects, project leaders and managers, as well as those with a teaching or research interest in project and risk management.
A guide to implementing and operating a practical reliability program using carefully designed experiments to provide information quickly, efficiently and cost effectively. It emphasizes real world solutions to daily problems. The second edition contains a special expanded section demonstrating how to combine accelerated testing with design of experiments for immediate improvement.
This book covers the basic scientific theory and related application technologies of the pantograph-catenary system, including research findings on pantograph/catenary contact resistance, pantograph interface thermal effect, laws and characteristics of current-carrying friction and wear, the main research methods for pantograph arcs, the effects of arcs on pantograph systems and onboard equipment, and the materials used for pantographs and contact wires. Given its scope, it offers a valuable resource for students, scholars, and development engineers alike. The relationship between pantograph and catenary is one of the three core aspects of the safe operation of high-speed electrified railways. The pantograph system provides electric power for the high-speed train through the sliding electric contact. As the train's operating speed increases, the pantograph system enters a state of prolonged sliding/vibration, resulting in frequent arcs, electrode erosion, and increased wear.
This edition of Forensic Engineering updates the original work with new case studies and investigative techniques. Contributors to the book are the foremost authorities in each area of specialization. These specialty areas include fire investigation, industrial accidents, product liability, traffic accidents, civil engineering and transportation disasters, and environmental systems failures.
As engineering systems become more and more complex, industry has reco gnized the importance of system and product reliability and places eve r increasing emphasis on it during the design phase. Despite its effor ts, however, industry continues to lose billions of dollars each year because of unexpected system failures. Therefore, it becomes increasin gly important for designers and engineers to have a solid grounding in reliability engineering and keep abreast of new developments and rese arch results. |
![]() ![]() You may like...
Cuban Cultural Heritage - A Rebel Past…
Pablo Alonso Gonzalez
Hardcover
R2,291
Discovery Miles 22 910
Outside In - The Transnational Circuitry…
Andrew Preston, Doug Rossinow
Hardcover
R3,834
Discovery Miles 38 340
Hidden Figures - The Untold Story of the…
Margot Lee Shetterly
Paperback
![]()
Key to the New World - A History of…
Luis Martinez-Fernandez
Hardcover
R2,022
Discovery Miles 20 220
|