![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Production engineering > Reliability engineering
This volume collects the papers from the World Conference on Acoustic Emission 2017 (WCAE-2017) in Xi'an, China. The latest research and applications of acoustic emission (AE) are explored, with a particular emphasis on detecting and processing AE signals, the development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques. Numerous case studies are also included. This proceedings volume will appeal to students, professors and researchers working in these fields as physicists and/or engineers.
In the resilience engineering approach to safety, failures and successes are seen as two different outcomes of the same underlying process, namely how people and organizations cope with complex, underspecified and therefore partly unpredictable work environments. Therefore safety can no longer be ensured by constraining performance and eliminating risks. Instead, it is necessary to actively manage how people and organizations adjust what they do to meet the current conditions of the workplace, by trading off efficiency and thoroughness and by making sacrificing decisions. The Ashgate Studies in Resilience Engineering series promulgates new methods, principles and experiences that can complement established safety management approaches, providing invaluable insights and guidance for practitioners and researchers alike in all safety-critical domains. While the Studies pertain to all complex systems they are of particular interest to high hazard sectors such as aviation, ground transportation, the military, energy production and distribution, and healthcare. Published periodically within this series will be edited volumes titled Resilience Engineering Perspectives. The first volume, Remaining Sensitive to the Possibility of Failure, presents a collection of 20 chapters from international experts. This collection deals with important issues such as measurements and models, the use of procedures to ensure safety, the relation between resilience and robustness, safety management, and the use of risk analysis. The final six chapters utilise the report from a serious medical accident to illustrate more concretely how resilience engineering can make a difference, both to the understanding of how accidents happen and to what an organisation can do to become more resilient.
This book starts with the basic ideas in uncertainty propagation using Monte Carlo methods and the generation of random variables and stochastic processes for some common distributions encountered in engineering applications. It then introduces a class of powerful simulation techniques called Markov Chain Monte Carlo method (MCMC), an important machinery behind Subset Simulation that allows one to generate samples for investigating rare scenarios in a probabilistically consistent manner. The theory of Subset Simulation is then presented, addressing related practical issues encountered in the actual implementation. The book also introduces the reader to probabilistic failure analysis and reliability-based sensitivity analysis, which are laid out in a context that can be efficiently tackled with Subset Simulation or Monte Carlo simulation in general. The book is supplemented with an Excel VBA code that provides a user-friendly tool for the reader to gain hands-on experience with Monte Carlo simulation. * Presents a powerful simulation method called Subset Simulation for efficient engineering risk assessment and failure and sensitivity analysis * Illustrates examples with MS Excel spreadsheets, allowing readers to gain hands-on experience with Monte Carlo simulation * Covers theoretical fundamentals as well as advanced implementation issues * A companion website is available to include the developments of the software ideas This book is essential reading for graduate students, researchers and engineers interested in applying Monte Carlo methods for risk assessment and reliability based design in various fields such as civil engineering, mechanical engineering, aerospace engineering, electrical engineering and nuclear engineering. Project managers, risk managers and financial engineers dealing with uncertainty effects may also find it useful.
For Resilience Engineering, 'failure' is the result of the adaptations necessary to cope with the complexity of the real world, rather than a breakdown or malfunction. The performance of individuals and organizations must continually adjust to current conditions and, because resources and time are finite, such adjustments are always approximate. This definitive new book explores this groundbreaking new development in safety and risk management, where 'success' is based on the ability of organizations, groups and individuals to anticipate the changing shape of risk before failures and harm occur. Featuring contributions from many of the worlds leading figures in the fields of human factors and safety, Resilience Engineering provides thought-provoking insights into system safety as an aggregate of its various components, subsystems, software, organizations, human behaviours, and the way in which they interact. The book provides an introduction to Resilience Engineering of systems, covering both the theoretical and practical aspects. It is written for those responsible for system safety on managerial or operational levels alike, including safety managers and engineers (line and maintenance), security experts, risk and safety consultants, human factors professionals and accident investigators.
Based on the author's 20 years of teaching, Risk Analysis in Engineering: Techniques, Tools, and Trends presents an engineering approach to probabilistic risk analysis (PRA). It emphasizes methods for comprehensive PRA studies, including techniques for risk management. The author assumes little or no prior knowledge of risk analysis on the part of the student and provides the necessary mathematical and engineering foundations. The text relies heavily on, but is not limited to, examples from the nuclear industry, because that is where PRA techniques were first developed. Since PRA provides a best-estimate approach, the author pays special attention to explaining uncertainty characterization. The book begins with a description of the basic definitions and principles of risk, safety, and performance and presents the elements of risk analysis and their applications in engineering. After highlighting the methods for performing PRAs, the author describes how to assess and measure performance ofthe building blocks of PRAs, such as reliability of hardware subsystems, structures, components, human actions, and software. He covers methods of characterizing uncertainties and methods for propagating them through the PRA model to estimate uncertainties of the results. The book explores how to identify and rank important and sensitive contributors to the estimated risk using the PRA and performance assessment models. It also includes a description of risk acceptance criteria and the formal methods for making decisions related to risk management options and strategies. The book concludes with a brief review of the main aspects, issues, and methods of risk communication. Drawing on notes, homework problems, and exams from courses he has taught as well as feedback from his students, Professor Modarres provides a from-the-trenches method for teaching risk assessment for engineers. This is a textbook that is easy to use for students and professors alike.
This is the proceedings of the selected papers presented at 2011 International Conference on Engineering Education and Management (ICEEM2011) held in Guangzhou, China, during November 18-20, 2011. ICEEM2011 is one of the most important conferences in the field of Engineering Education and Management and is co-organized by Guangzhou University, The University of New South Wales, Zhejiang University and Xi'an Jiaotong University. The conference aims to provide a high-level international forum for scientists, engineers, and students to present their new advances and research results in the field of Engineering Education and Management. This volume comprises 122 papers selected from over 400 papers originally submitted by universities and industrial concerns all over the world. The papers specifically cover the topics of Management Science and Engineering, Engineering Education and Training, Project/Engineering Management, and Other related topics. All of the papers were peer-reviewed by selected experts. The papers have been selected for this volume because of their quality and their relevancy to the topic. This volume will provide readers with a broad overview of the latest advances in the field of Engineering Education and Management. It will also constitute a valuable reference work for researchers in the fields of Engineering Education and Management.
This book presents the state-of-the-art in quality and reliability engineering from a product life-cycle standpoint. Topics in reliability include reliability models, life data analysis and modeling, design for reliability as well as accelerated life testing and reliability growth analysis, while topics in quality include design for quality, acceptance sampling and supplier selection, statistical process control, production tests such as environmental stress screening and burn-in, warranty and maintenance. The book provides comprehensive insights into two closely related subjects, and includes a wealth of examples and problems to enhance readers' comprehension and link theory and practice. All numerical examples can be easily solved using Microsoft Excel. The book is intended for senior undergraduate and postgraduate students in related engineering and management programs such as mechanical engineering, manufacturing engineering, industrial engineering and engineering management programs, as well as for researchers and engineers in the quality and reliability fields. Dr. Renyan Jiang is a professor at the Faculty of Automotive and Mechanical Engineering, Changsha University of Science and Technology, China.
This book offers meaningful insights into an impending challenge for the energy industry, namely the increasing role of asset management amongst the utilities' core operations. In the aftermath of energy digitalization, power and gas companies will be able to seize asset productivity-through risk-based operation and maintenance-and better balance capital and operational expenditures. By addressing the asset management of both power and gas infrastructures, and by adopting a comprehensive approach-including regulation and business models, as well as a solid technology background-this book offers a unique perspective on the energy utilities' transformation journey and the road to optimal decision-making for both asset portfolio expansion and replacement. The asset management end-to-end mission requires appropriate internal governance-depending on the business framework-and the development of decision aid models (for asset replacement and maintenance), supported on probabilistic risk and reliability indexes. This book advocates systematically digitalizing the power and gas assets, addressing both data governance and infrastructure, alongside real-time equipment condition monitoring. It also provides a meaningful methodology for designing data-centric asset management and predictive operation and maintenance, using artificial intelligence and engineering-based approaches. As such, it provides valuable strategy, methods and models-illustrated by case studies and proofs of concept-for a wide range of stakeholders, including utilities and industry professionals, regulators, policy-makers, researchers and students.
Due to global competition, safety regulations, and other factors, manufacturers are increasingly pressed to create products that are safe, highly reliable, and of high quality. Engineers and quality assurance professionals need a cross-disciplinary understanding of these topics in order to ensure high standards in the design and manufacturing processes. Reliability, Quality, and Safety for Engineers is the first publication to integrate this information in a single source. The text begins with an introduction that discusses the need for reliability, quality and safety as well as historical information, terms, and definitions. Subsequent chapters discuss relevant mathematics, evaluation models and methods, testing, management, and costing. The author treats each topic in a comprehensive manner that requires no prior knowledge of the subject in order to understand the contents. The author includes numerous examples, problems, and solutions to test the reader's comprehension. He also lists important journals, organizations, standards, and books for further study, creating a comprehensive resource for design, system, safety and manufacturing engineers as well as reliability specialists and quality assurance professionals.
Risk Analysis for Process Plants, Pipelines and Transport gives a detailed description of practical risk and safety analysis methods, tried and tested in over 100 process industry projects. The aim is to provide the methods and data needed by practising safety engineers, as well as practical advice on how to use them.
An integral part of any engineering or manufacturing process is a continuous process of assessing its safety and reliability. This work provides a guide to the practical application of safety and reliability principles wherever risk is a consideration. The theory and mathematics are kept to a minimum, whilst a practical working model of the technology is presented for everyone involved in general engineering disciplines. It reduces the high cost of using professional consultant practitioners, introduces an advanced methodology of common mode failure analysis and modelling, with potential savings on system capital costs, and provides an illustration of working principles by graded tutorial projects.
The collection of papers in this book comprises the proceedings of the 23rd CIRP Design Conference held between March 11th and March 13th 2013 at the Ruhr-Universitat Bochum in Germany. The event was organized in cooperation with the German Academic Society for Product Development WiGeP. The focus of the conference was on -Smart Product Engineering-, covering two major aspects of modern product creation: the development of intelligent ( smart ) products as well as the new ( smart ) approach of engineering, explicitly taking into account consistent systems integration. Throughout the 97 papers contained in these proceedings, a range of topics are covered, amongst them the different facets and aspects of what makes a product or an engineering solution smart . In addition, the conference papers investigate new ways of engineering for production planning and collaboration towards Smart Product Engineering. The publications provide a solid insight into the pressing issues of modern digital product creation facing increasing challenges in a rapidly changing industrial environment. They also give implicit advice how a smart product or engineering solution (processes, methods and tools) needs to be designed and implemented in order to become successful.
A guide to implementing and operating a practical reliability program using carefully designed experiments to provide information quickly, efficiently and cost effectively. It emphasizes real world solutions to daily problems. The second edition contains a special expanded section demonstrating how to combine accelerated testing with design of experiments for immediate improvement.
Investors and managers of major projects know how often they result in cost overruns and schedule delays. Risk Navigation Strategies for Major Capital Projects builds on conventional best practice to provide a risk-based view of current practices for planning and executing large international projects. As economies of scale continue to drive projects to ever-higher levels of scope and complexity, new thinking about strategy and risk is required. Since major projects are highly exposed to external risks, the traditional view of predictability as something that can be mandated and ensured by rigorous application of conventional best practice has become a myth. Fresh thinking is required to manage projects today, and this book provides a framework for taking project management best practice to the next level. Risk Navigation Strategies for Major Capital Projects is intended for executives investing in major projects, project leaders and managers, as well as those with a teaching or research interest in project and risk management.
This edition of Forensic Engineering updates the original work with new case studies and investigative techniques. Contributors to the book are the foremost authorities in each area of specialization. These specialty areas include fire investigation, industrial accidents, product liability, traffic accidents, civil engineering and transportation disasters, and environmental systems failures.
This publication elucidates the various problems associated with attaining stability, and provides the results for practical use by the design engineer. By presenting a simple and visual description of the physical phenomena, the authors show how to determine the critical loads of various structures, such as frames, arches, building structures, trusses and sandwiches. Special emphasis is given to the post-critical behaviour - essential for assessing the safety of structures - and furthermore to the summation theories that make the solution of complicated stability problems relatively simple. It is a guide for structural design engineers and researchers who need a good understanding of buckling phenomena. It should also be a useful text for undergraduate and MSc students on structural stability courses.
As engineering systems become more and more complex, industry has reco gnized the importance of system and product reliability and places eve r increasing emphasis on it during the design phase. Despite its effor ts, however, industry continues to lose billions of dollars each year because of unexpected system failures. Therefore, it becomes increasin gly important for designers and engineers to have a solid grounding in reliability engineering and keep abreast of new developments and rese arch results.
This book presents the state-of-the-art methodology and detailed analytical models and methods used to assess the reliability of complex systems and related applications in statistical reliability engineering. It is a textbook based mainly on the author's recent research and publications as well as experience of over 30 years in this field. The book covers a wide range of methods and models in reliability, and their applications, including: statistical methods and model selection for machine learning; models for maintenance and software reliability; statistical reliability estimation of complex systems; and statistical reliability analysis of k out of n systems, standby systems and repairable systems. Offering numerous examples and solved problems within each chapter, this comprehensive text provides an introduction to reliability engineering graduate students, a reference for data scientists and reliability engineers, and a thorough guide for researchers and instructors in the field.
This book covers the basic scientific theory and related application technologies of the pantograph-catenary system, including research findings on pantograph/catenary contact resistance, pantograph interface thermal effect, laws and characteristics of current-carrying friction and wear, the main research methods for pantograph arcs, the effects of arcs on pantograph systems and onboard equipment, and the materials used for pantographs and contact wires. Given its scope, it offers a valuable resource for students, scholars, and development engineers alike. The relationship between pantograph and catenary is one of the three core aspects of the safe operation of high-speed electrified railways. The pantograph system provides electric power for the high-speed train through the sliding electric contact. As the train's operating speed increases, the pantograph system enters a state of prolonged sliding/vibration, resulting in frequent arcs, electrode erosion, and increased wear.
Accident records show that sooner or later hindrances near a waterway will be hit by ships, be it navigation marks, bridge structures, reefs or shallows. With this background modelling and analysis of ship collisions to bridge structures have an increasing importance as the basis for rational decision making in connection with planning, design and construction of bridges over navigable waters. The International Symposium on Ship Collision Analysis focuses on advances in accident analysis, collision prevention and protective measures. The publication Ship Collision Analysis, Proceedings of the 1998 International Symposium, presents the papers of international experts in ship collision analysis and structural design. The contributions give the state of the art and point to future development trends with in the focus areas.
This book gives a practical guide for designers and users in Information and Communication Technology context. In particular, in the first Section, the definition of the fundamental terms according to the international standards are given. Then, some theoretical concepts and reliability models are presented in Chapters 2 and 3: the aim is to evaluate performance for components and systems and reliability growth. Chapter 4, by introducing the laboratory tests, puts in evidence the reliability concept from the experimental point of view. In ICT context, the failure rate for a given system can be evaluate by means of specific reliability prediction handbooks; this aspect is considered in Chapter 5, with practical applications. In Chapters 6, 7 and 8, the more complex aspects regarding both the Maintainability, Availability and Dependability are taken into account; in particular, some fundamental techniques such as FMECA (Failure Mode, Effects, and Criticality Analysis) and FTA (Fault Tree Analysis) are presented with examples for reparable systems.
An integral part of any engineering or manufacturing process is a continuous process of assessing its safety and reliability. This work provides a guide to the practical application of safety and reliability principles wherever risk is a consideration. The theory and mathematics are kept to a minimum, whilst a practical working model of the technology is presented for everyone involved in general engineering disciplines. It reduces the high cost of using professional consultant practitioners, introduces an advanced methodology of common mode failure analysis and modelling, with potential savings on system capital costs, and provides an illustration of working principles by graded tutorial projects.
With the increased presence of nanomaterials in commercial products such as cosmetics and sunscreens, fillers in dental fillings, water filtration process, catalysis, photovoltaic cells, bio-detection, a growing public debate is emerging on toxicological and environmental effects of direct and indirect exposure to these materials. Nanomaterials: A Danger or a Promise? forms a balanced overview of the health and environmental issues of nanoscale materials. By considering both the benefits and risks associated with nanomaterials, Nanomaterials: A Danger or a Promise? compiles a complete and detailed image of the many aspects of the interface between nanomaterials and their real-life application. The full cycle of nanomaterials life will be presented and critically assessed to consider and answer questions such as: How are nanomaterials made? What they are used for? What is their environmental fate? Can we make them better? Including coverage of relevant aspects about the toxicity of manufactured nanomaterials, nanomaterials life cycle, exposure issues, Nanomaterials: A Danger or a Promise? provides a comprehensive overview of the actual knowledge in these fields but also presents perspectives for the future development of a safer nanoscience. This comprehensive resource is a key reference for students, researcher, manufacturers and industry professionals alike.
This book comprises select proceedings of the international conference ETAEERE 2020, and focuses on contemporary issues in energy management and energy efficiency in the context of power systems. The contents cover modeling, simulation and optimization based studies on topics like medium voltage BTB system, cost optimization of a ring frame unit in textile industry, rectenna for RF energy harvesting, ecology and energy dimension in infrastructural designs, study of AGC in two area hydro thermal power system, energy-efficient and reliable depth-based routing protocol for underwater wireless sensor network, and power line communication. This book can be beneficial for students, researchers as well as industry professionals.
Reliability theory is a major concern for engineers and managers engaged in making high quality products and designing highly reliable systems. "Advanced Reliability Models and Maintenance Policies" is a survey of new research topics in reliability theory and optimization techniques in reliability engineering. The book introduces partition and redundant problems within reliability models, and provides optimization techniques. The book also indicates how to perform maintenance in a finite time span and at failure detection, and to apply recovery techniques for computer systems. New themes such as reliability complexity and service reliability in reliability theory are theoretically proposed, and optimization problems in management science using reliability techniques are presented. The book is an essential guide for graduate students and researchers in reliability theory, and a valuable reference for reliability engineers engaged both in maintenance work and in management and computer systems. |
You may like...
Mathematics for Young Learners - A Guide…
Rosalind Charlesworth, Karen Lind, …
Paperback
R812
Discovery Miles 8 120
Global Education and the Impact of…
Maria Jose Loureiro, Ana Loureiro, …
Hardcover
R6,648
Discovery Miles 66 480
Advancing Educational Research With…
Eugene Kennedy, Yufeng Qian
Hardcover
R5,374
Discovery Miles 53 740
Leveraging Technology to Improve School…
Stephanie P. Huffman, Stacey Loyless, …
Hardcover
R5,372
Discovery Miles 53 720
Telecollaboration Applications in…
Salvador Montaner-Villalba, Sofia Di Sarno-Garcia, …
Hardcover
R5,492
Discovery Miles 54 920
Challenges of the Educational System in…
Jordi M. Manuel Antoli Martinez
Hardcover
R5,327
Discovery Miles 53 270
Virtual and Augmented Reality in…
Giuliana Guazzaroni, Anitha S. Pillai
Hardcover
R6,218
Discovery Miles 62 180
|