![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Production engineering > Reliability engineering
This book explores the practical implementation of an advanced after-sales management framework devoted to warranty management. The framework is intended for companies producing either standardized or customized products and such a management tool will facilitate organizational improvement and support innovative decision making processes for technical assistance in after-sales services. “After–sales Service of Engineering Industrial Assets†comprises a proposal for a warranty management framework, with an account of the different methods that can be used to improve decision making in the different stages of the after-sales service management process, and strategies for strengthening the structure and foundations of the framework. A review of the fundamental issues and current research topics in warranty management and after sales services is also provided, which is exemplified by a case study. This book is intended for postgraduates, researchers and engineers who are interested in after sales management, assets engineering and warranty management.
With the growing complexity of engineered systems, reliability has
increased in importance throughout the twentieth century. Initially
developed to meet practical needs, reliability theory has become an
applied mathematical discipline that permits a priori evaluations
of various reliability indices at the design stages. These
evaluations help engineers choose an optimal system structure,
improve methods of maintenance, and estimate the reliability on the
basis of special testing. Probabilistic Reliability Engineering
focuses on the creation of mathematical models for solving problems
of system design.
Global Perspective for Competitive Enterprise, Economy and Ecology addresses the general theme of the Concurrent Engineering (CE) 2009 Conference – the need for global advancements in the areas of competitive enterprise, economy and ecology. The proceedings contain 84 papers, which vary from the theoretical and conceptual to the practical and industrial. The content of this volume reflects the genuine variety of issues related to current CE methods and phenomena. Global Perspective for Competitive Enterprise, Economy and Ecology will therefore enable researchers, industry practitioners, postgraduate students and advanced undergraduates to build their own view of the inherent problems and methods in CE.
This book explains integrated circuit design for manufacturability (DfM) at the product level (packaging, applications) and applies engineering DfM principles to the latest standards of product development at 22 nm technology nodes. It is a valuable guide for layout designers, packaging engineers and quality engineers, covering DfM development from 1D to 4D, involving IC design flow setup, best practices, links to manufacturing and product definition, for process technologies down to 22 nm node, and product families including memories, logic, system-on-chip and system-in-package.
This book provides information on proper underground mine ventilation in order to detail its importance in maintaining safe, productive, healthy and effective underground environments at all times for employees. The text covers correct design, implementation and maintenance of mine ventilation through suitable fan installation, and keeps in mind the economic requirements of undertaking safe procedures and implementations to ensure that ventilation is optimal. Through three main goals, the book addresses the need for proper fan ventilation in the potentially hazardous conditions of an underground mine. The first goal is to summarize and update the technical information on the strategic importance of selecting suitable techno-commercial main mechanical ventilators for a coal mine. The second goal is to provide a user friendly computer program to help any practicing engineers, mine operators, regulators and researchers in choosing the main mechanical ventilators. Factors in this selection process include environmental requirements, regulatory conditions, occupational health related issues, and cost. The third goal is to provide applications for computer programs meant to determine proper selection and implementation of the main mechanical ventilators. The text is geared towards teachers, researchers, policy makers, environmental organizations and mine operators who wish to teach about or implement the best possible ventilation systems for the health and safety of mine workers.
Originally published in the USSR, Handbook of Reliability Engineering set the standard for the reliability testing of technical systems for nearly three generations of applied scientists and engineers. Authored by a group of prominent Soviet specialists in reliability, it provided professionals and students with the first comprehensive reference covering mathematical formulas and techniques for incorporating reliability into engineering designs and testing procedures for nearly three decades. Now, the Handbook's Russian editor, an internationally recognized reliability expert in his own right, has joined forces with a prominent American engineering professional to bring this indispensable resource to English-speaking audiences. Divided into three major parts, the Handbook details reliability fundamentals, examines common reliability problems and solutions, provides a collection of computation formulas and illustrates practical applications of the methods discussed in twenty-four self-contained chapters. Part One, Probabilistic Reliability, discusses equipment, renewable systems, repairable dual systems, asymptotic methods for very reliable repairable systems, systems with network structures, evaluation of system effectiveness, systems with time redundancy, queuing systems with unreliable service channels, and mechanical equipment. In Part Two, Statistical Reliability, the authors discuss estimation of equipment reliability from tests, acceptance-rejection tests, system confidence limits based on unit tests, acceptance-rejection test plans for complex systems, Bayesian reliability estimation, accelerated tests, reliability growth and Monte Carlo simulations. Part Three, Optimization, offers detailed coverage of optimal redundancy, optimal supply of spare parts, optimal control of inventories of spare parts, optimal maintenance, and optimal technical diagnosis. Each topic is introduced using simple, numerical examples readers can follow step-by-step. Appendices offer a review of probability, stochastic processes and mathematical statistics, standard mathematical formulas used in reliability, useful numerical tables as well as information about where readers can purchase reliability software to apply to their own work in engineering design, life prediction, and more. As reliability theory strengthens its already strong position in modern engineering, the Handbook of Reliability Engineering will continue to provide engineers, statisticians, operations research professionals, and students with one of the most comprehensive treatments of reliability topics in print.
This book reports on the state of the art in the field of multiphysics systems. It consists of accurately reviewed contributions to the MMSSD'2014 conference, which was held from December 17 to 19, 2004 in Hammamet, Tunisia. The different chapters, covering new theories, methods and a number of case studies, provide readers with an up-to-date picture of multiphysics modeling and simulation. They highlight the role played by high-performance computing and newly available software in promoting the study of multiphysics coupling effects, and show how these technologies can be practically implemented to bring about significant improvements in the field of design, control and monitoring of machines. In addition to providing a detailed description of the methods and their applications, the book also identifies new research issues, challenges and opportunities, thus providing researchers and practitioners with both technical information to support their daily work and a new source of inspiration for their future research.
This book describes the challenges that critical infrastructure systems face, and presents state of the art solutions to address them. How can we design intelligent systems or intelligent agents that can make appropriate real-time decisions in the management of such large-scale, complex systems? What are the primary challenges for critical infrastructure systems? The book also provides readers with the relevant information to recognize how important infrastructures are, and their role in connection with a society’s economy, security and prosperity. It goes on to describe state-of-the-art solutions to address these points, including new methodologies and instrumentation tools (e.g. embedded software and intelligent algorithms) for transforming and optimizing target infrastructures. The book is the most comprehensive resource to date for professionals in both the private and public sectors, while also offering an essential guide for students and researchers in the areas of modeling and analysis of critical infrastructure systems, monitoring, control, risk/impact evaluation, fault diagnosis, fault-tolerant control, and infrastructure dependencies/interdependencies. The importance of the research presented in the book is reflected in the fact that currently, for the first time in human history, more people live in cities than in rural areas, and that, by 2050, roughly 70% of the world’s total population is expected to live in cities.
Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed.
The book presents the development of the Construction Quality Assessment System (CONQUAS), Singapore's de facto quality performance measurement system, explains the application of the Quality Management System (QMS) to manage CONQUAS and identifies 33 critical success factors (CSFs) for achieving high CONQUAS scores. Through CONQUAS, the reader benefits from understanding how the Singapore government developed and implemented the first objective system for measuring what many building professionals have perceived to be elusive quality standards in the construction industry. The book presents both the theoretical concepts as well as the practical aspects to achieving strategic Project Quality Management that is anchored on the CSFs to building best practices. To realistically reflect the practical aspects and challenging issues faced by stakeholders in the construction industry, questionnaire surveys were conducted with building professionals to distinguish the importance level and extent of adoption of the 33 CSFs (identified from a comprehensive review of the extant literature) in influencing and affecting the achievement of high CONQUAS scores. These were further anchored by in-depth interviews with quality experts in the Singapore construction industry to provide a better understanding of issues relating to strategic Project Quality Management. Collectively, the empirical findings collated from the building professionals suggest that while the CSFs identified are known tenets of quality, these were still not being followed in their totality. A further case study was conducted through a formal set of in-depth interviews with the quality assurance team of a construction company who has direct involvement before, during and after their tremendous improvements in the CONQUAS scores attained. The strength of this book therefore represents a true account and reflections of real-life practices and experiences in the construction industry for contractors, quality managers and policy-makers to learn from. Although the context of this book relates to the Singapore experience, the lessons and recommendations are equally relevant and applicable to the global construction industry in both the developing and developed countries whose stakeholders (in both the public and private sectors) wish to understand how CONQUAS works, and how the CSFs identified can likewise be implemented for strategic Project Quality Management to building best practices. The book is therefore of interests to researchers, academia and practitioners in the construction industry as well as in other sectors of the economy (in Singapore and other countries) where learning points may be used for enhancing project quality management for buildings.
This critical volume provides practical insights on sulfuric acid and related plant design and on techniques to improve and enhance substantially the efficiency of an existing plant by means of small modifications. The book provides readers with a better understanding of the state-of-art in sulfuric acid manufacture as well as, importantly, in the manufacture of value-added products based on sulfur that are also associated with the manufacture of sulfuric acid. Overall, engineers and plant managers will be introduced to technologies for making their sulfuric acid enterprises more productive, remunerative, and environmentally friendly. A Practical Guide to the Manufacture of Sulfuric Acid, Oleums, and Sulfonating Agents covers sulfuric acid and derivative chemical plant details from the nuts-and-bolts level to a holistic perspective based on actual field experience. The book is indispensable to anyone involved in implementing a sulfuric acid or related chemical plant.
Particulate products make up around 80% of chemical products, from all industry sectors. Examples given in this book include the construction materials, fine ceramics and concrete; the delicacies, chocolate and ice cream; pharmaceutical, powders, medical inhalers and sun screen; liquid and powder paints. Size distribution and the shape of the particles provide for different functionalities in these products. Some functions are general, others specific. General functions are powder flow and require - at the typical particulate concentrations of these products - that the particles cause adequate rheological behavior during processing and/or for product performance. Therefore, this book addresses particle packing as well as its relation to powder flow and rheological behavior. Moreover, general relationships to particle size are discussed for e.g. color and sensorial aspects of particulate products. Product-specific functionalities are often relevant for comparable product groups. Particle size distribution and shape provide, for example, the following functionalities: - dense particle packing in relation to sufficient strength is required in concrete construction, ceramic objects and pharmaceutical tablets - good sensorial properties (mouthfeel) to chocolate and ice cream - effective dissolution, flow and compression properties for pharmaceutical powders - adequate hiding power and effective coloring of paints for protection and the desired esthetical appeal of the objects - adequate protection of our body against sun light by sunscreen - effective particle transport and deposition to desired locations for medical inhalers and powder paints. Adequate particle size distribution, shape and porosity of particulate products have to be achieved in order to reach optimum product performance. This requires adequate management of design and development as well as sufficient knowledge of the underlying principles of physics and chemistry. Moreover, flammability, explosivity and other health hazards from powders, during handling, are taken into account. This is necessary, since great risks may be involved. In all aspects, the most relevant parameters of the size distribution (and particle shape) have to be selected. In this book, experts in the different product fields have contributed to the product chapters. This provides optimum information on what particulate aspects are most relevant for behavior and performance within specified industrial products and how optimum results can be obtained. It differs from other books in the way that the critical aspects of different products are reported, so that similarities and differences can be identified. We trust that this approach will lead to improved optimization in design, development and quality of many particulate products.
Exploring the concept of quality management from a new point of view, this book presents a holistic model of how consumers judge the quality of products. It links consumer perceptions of quality to the design and delivery of the final product, and presents models and methods for improving the quality of these products and services. It offers readers an improved understanding of how and why the design process must consider how the consumer will perceive a product or service. In order to facilitate the presentation and understanding of these concepts, illustrations and case examples are also provided throughout the book. This book provides an invaluable resource for managers, designers, manufacturers, professional practitioners and academics interested in quality management. It also offers a useful supplementary text for marketing and quality management courses.
This volume will define the direction of eddy-current technology in nondestructive evaluation (NDE) in the twenty-first century. It describes the natural marriage of the computer to eddy-current NDE, and its publication was encouraged by favorable responses from workers in the nuclear-power and aerospace industries. It will be used by advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging, among others, and will be based on our experience in applying the subject of computational electromagnetics to these areas, as manifested by our recent research and publications. Finally, it will be a reference to future monographs on advanced NDE that are being contemplated by our colleagues and others. Its importance lies in the fact that it will be the first book to show that advanced computational methods can be used to solve practical, but difficult, problems in eddy-current NDE. In fact, in many cases these methods are the only things available for solving the problems. The book will cover the topic of computational electromagnetics in eddy-current nondestructive evaluation (NDE) by emphasizing three distinct topics: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. This will make the book more than an academic exercise; we expect it to be valuable to users of eddy-current NDE technology in industries as varied as nuclear power, aerospace, materials characterization and biomedical imaging. We know of no other book on the market that covers this material in the manner in which we will present it, nor are there any books, to our knowledge, that apply this material to actual test situations that are of importance to the industries cited. It will be the first book to actually define the modern technology of eddy-current NDE, by showing how mathematics and the computer will solve problems more effectively than current analog practice.
Accidents in technical installations are random events. Hence they cannot be totally avoided. Only the probability of their occurrence may be reduced and their consequences be mitigated. The book proceeds from hazards caused by materials and process conditions to indicating technical and organizational measures for achieving the objectives of reduction and mitigation. Qualitative methods for identifying weaknesses of design and increasing safety as well as models for assessing accident consequences are presented. The quantitative assessment of the effectiveness of safety measures is explained. The treatment of uncertainties plays a role there. They stem from the random character of the accident and from lacks of knowledge on some of the phenomena to be addressed. The reader is acquainted with the simulation of accidents, safety and risk analyses and learns how to judge the potential and limitations of mathematical modelling. Risk analysis is applied amongst others to “functional safety†and the determination of “appropriate distances†between industry and residential areas (land-use planning). This shows how it can be used as a basis for safety-relevant decisions. Numerous worked-out examples and case studies addressing real plants and situations deepen the understanding of the subjects treated and support self-study. Target groups Chemical and petrochemical industry, licensing authorities, testing and certification bodies, safety engineers, engineering , students of process,  chemical and mechanical engineering as well as of industrial and engineering chemistry.
This brief presents information on occupational injuries from electric shock and arc flash events through a review of literature, electrical incident data, and similar sources. It includes pertinent information such as the nature of the incident, adherence to safety requirements, use of appropriate personal protective equipment (PPE), and extent of injury. Chapters address arc flash and shock hazards, and the need for empirical incident data on the actual hazards that may be experienced when equipment faults or adverse electrical events occur. Certain tasks where the risk of an arc flash or shock hazard may be lower, such as normal operation of properly installed and maintained equipment, may not require the use of any special PPE. Some of this risk reduction is based on anecdotal data, and the brief details why future research challenges will need more empirical incident data on the actual hazards and associated injuries that may be experienced when equipment faults or adverse electrical events occur. Designed for professionals and researchers in fire protection engineering, workplace electrical tasks, or workplace safety, this brief offers a thorough overview of the trends in electrical injuries and the costs related to those injuries.
Water engineers require knowledge of stochastic, frequency concepts, uncertainty analysis, risk assessment, and the processes that predict unexpected events. This book presents the basics of stochastic, risk and uncertainty analysis, and random sampling techniques in conjunction with straightforward examples which are solved step by step. In addition, appropriate Excel functions are included as an alternative to solve the examples, and two real case studies is presented in the last chapters of book.
This volume presents concepts, policies and cost models for various long-term warranty and maintenance contracts. It offers several numerical examples for estimating costs to both the manufacturer and consumer. Long-term warranties and maintenance contracts are becoming increasingly popular, as these types of aftersales services provide assurance to consumers that they can enjoy long, reliable service, and protect them from defects and the potentially high costs of repairs. Studying long-term warranty and service contracts is important to manufacturers and consumers alike, as offering long-term warranty and maintenance contracts produce additional costs for manufacturers / service providers over the product's service life. These costs must be factored into the price, or the manufacturer / dealer will incur losses instead of making a profit. On the other hand, the buyer / consumer needs to weigh the cost of maintaining it over its service life and to decide whether or not these policies are worth purchasing. There are a number of complexities involved in developing failure and cost models for these policies due to uncertainties concerning the service life, usage pattern, maintenance work and long-term costs of rectifications. Mathematical models for predicting failures and expected costs for various one-dimensional long-term warranty policies are developed at the system level and analyzed by taking into account the uncertainties in connection with longer coverage periods and the rectification costs over the warranty period. Failures and costs are modeled using stochastic techniques and illustrated by means of numerical examples for estimating costs to the manufacturer and consumer. Various rectification policies are proposed and analyzed. The models developed here can be used to aid in managerial decisions on purchasing products with long-term warranty policies and maintenance contracts or outsourcing maintenance.
This book describes the basic concepts of risk and reliability with detailed descriptions of the different levels of probabilistic safety assessment of nuclear power plants (both internal and external). The book also maximizes readers insights into time dependent risk analysis through several case studies, whilst risk management with respect to non renewable energy sources is also explained. With several advanced reactors utilizing the concept of passive systems, the reliability estimation of these systems are explained in detail with the book providing a reliability estimation of components through mechanistic model approach. This book is useful for advanced undergraduate and post graduate students in nuclear engineering, aerospace engineering, industrial engineering, reliability and safety engineering, systems engineering and applied probability and statistics. This book is also suitable for one-semester graduate courses on risk management of non renewable energy systems in all conventional engineering branches like civil, mechanical, chemical, electrical and electronics as well as computer science. It will also be a valuable reference for practicing engineers, managers and researchers involved in reliability and safety activities of complex engineering systems.
This brief addresses the contextual definition of resilience, explains the existing resiliency frameworks developed by Federal Agencies, and emphasizes the risk informed approach to applying resiliency concepts to National Fire Protection Association (NFPA) documents. In an effort to assess and further define NFPA's position in the realm of resiliency, this brief identifies those provisions in NFPA codes and standards that embody the concepts of resiliency. Additionally, the brief develops an NFPA-centric definition of resiliency and compiles available information to serve as a technical reference for the codes and standards, identifying key gaps in knowledge. Key topics range from engineered features and the built environment to emergency response and risk-informed approaches to disaster events. The brief also includes a comprehensive literature review on multiple resiliency frameworks. Written for fire protection engineers and professionals who handle disaster risk assessment, this brief provides a thorough overview of resiliency concepts and how NFPA procedures strive to meet recommended standards.
This volume presents measurement uncertainty and uncertainty budgets in a form accessible to practicing engineers and engineering students from across a wide range of disciplines. The book gives a detailed explanation of the methods presented by NIST in the "GUM" - Guide to Uncertainty of Measurement. Emphasis is placed on explaining the background and meaning of the topics, while keeping the level of mathematics at the minimum level necessary. Dr. Colin Ratcliffe, USNA, and Bridget Ratcliffe, Johns Hopkins, develop uncertainty budgets and explain their use. In some examples, the budget may show a process is already adequate and where costs can be saved. In other examples, the budget may show the process is inadequate and needs improvement. The book demonstrates how uncertainty budgets help identify the most cost effective place to make changes. In addition, an extensive fully-worked case study leads readers through all issues related to an uncertainty analysis, including a variety of different types of uncertainty budgets. The book is ideal for professional engineers and students concerned with a broad range of measurement assurance challenges in applied sciences. This book also: Facilitates practicing engineers' understanding of uncertainty budgets, essential to calculating cost-effective savings to a wide variety of processes contingent on measurement Presents uncertainty budgets in an accessible style suitable for all undergraduate STEM courses that include a laboratory component Provides a highly adaptable supplement to graduate textbooks for courses where students' work includes reporting on experimental results Includes an expanded case study developing uncertainty from transducers though measurands and propagated to the final measurement that can be used as a template for the analysis of many processes Stands as a useful pocket reference for all engineers and experimental scientists
This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support for electrical and electronics engineering students and professionals, bridging academic curriculum with industrial expectations.
This edited book contains several state-of-the-art papers devoted to econometrics of risk. Some papers provide theoretical analysis of the corresponding mathematical, statistical, computational, and economical models. Other papers describe applications of the novel risk-related econometric techniques to real-life economic situations. The book presents new methods developed just recently, in particular, methods using non-Gaussian heavy-tailed distributions, methods using non-Gaussian copulas to properly take into account dependence between different quantities, methods taking into account imprecise ("fuzzy") expert knowledge, and many other innovative techniques. This versatile volume helps practitioners to learn how to apply new techniques of econometrics of risk, and researchers to further improve the existing models and to come up with new ideas on how to best take into account economic risks.
This book describes how manufacturing enterprises, by reinforcing their existing monitoring and control of manufacturing processes, can successfully face the ever-increasing pressure from internal and external environments to maintain their competitive advantage. Numerous performance measurement systems have been elaborated to satisfy these requirements, stressing the importance of financial and operational metrics. It also highlights the fact that research on generating and linking financial and operational metrics, especially in real-time, has not garnered sufficient attention to date. The book follows an approach that integrates enterprises across different levels and departments. By computing and linking the financial and operational metrics in real-time, the book demonstrates how to provide a comprehensive view of an entire enterprise. |
You may like...
Machinery Failure Analysis Handbook…
Luiz Octavio Amaral Affonso
Hardcover
R3,076
Discovery Miles 30 760
Advances in System Reliability…
Mangey Ram, J. Paulo Davim
Paperback
|