![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Production engineering > Reliability engineering
This is the proceedings of the selected papers presented at 2011 International Conference on Engineering Education and Management (ICEEM2011) held in Guangzhou, China, during November 18-20, 2011. ICEEM2011 is one of the most important conferences in the field of Engineering Education and Management and is co-organized by Guangzhou University, The University of New South Wales, Zhejiang University and Xi'an Jiaotong University. The conference aims to provide a high-level international forum for scientists, engineers, and students to present their new advances and research results in the field of Engineering Education and Management. This volume comprises 122 papers selected from over 400 papers originally submitted by universities and industrial concerns all over the world. The papers specifically cover the topics of Management Science and Engineering, Engineering Education and Training, Project/Engineering Management, and Other related topics. All of the papers were peer-reviewed by selected experts. The papers have been selected for this volume because of their quality and their relevancy to the topic. This volume will provide readers with a broad overview of the latest advances in the field of Engineering Education and Management. It will also constitute a valuable reference work for researchers in the fields of Engineering Education and Management.
As the main theme of Improving Complex Systems Today implies, this book is intended to provide readers with a new perspective on concurrent engineering from the standpoint of systems engineering. It can serve as a versatile tool to help readers to navigate the ever-changing state of this particular field. The primary focus of concurrent engineering was, at first, on bringing downstream information as far upstream as possible by introducing parallel processing in order to reduce time to market and to prevent errors at a later stage which would sometimes cause irrevocable damage. Up to now, numerous new concepts, methodologies and tools have been developed, but over concurrent engineering's 20-year history the situation has changed extensively. Now, industry has to work in the global marketplace and to cope with diversifying requirements and increasing complexities. Such globalization and diversification necessitate collaboration across different fields and across national boundaries. Thus, the new concurrent engineering calls for a systems approach to gain global market competitiveness. Improving Complex Systems Today provides a new insight into concurrent engineering today.
An effective reliability programme is an essential component of every product's design, testing and efficient production. From the failure analysis of a microelectronic device to software fault tolerance and from the accelerated life testing of mechanical components to hardware verification, a common underlying philosophy of reliability applies. Defining both fundamental and applied work across the entire systems reliability arena, this state-of-the-art reference presents methodologies for quality, maintainability and dependability. Featuring: Contributions from 60 leading reliability experts in academia and industry giving comprehensive and authoritative coverage. A distinguished international Editorial Board ensuring clarity and precision throughout. Extensive references to the theoretical foundations, recent research and future directions described in each chapter. Comprehensive subject index providing maximum utility to the reader. Applications and examples across all branches of engineering including IT, power, automotive and aerospace sectors. The handbook's cross-disciplinary scope will ensure that it serves as an indispensable tool for researchers in industrial, electrical, electronics, computer, civil, mechanical and systems engineering. It will also aid professional engineers to find creative reliability solutions and management to evaluate systems reliability and to improve processes. For student research projects it will be the ideal starting point whether addressing basic questions in communications and electronics or learning advanced applications in micro-electro-mechanical systems (MEMS), manufacturing and high-assurance engineering systems.
The safe management of the complex distributed systems and critical infrastructures which constitute the backbone of modern industry and society entails identifying and quantifying their vulnerabilities to design adequate protection, mitigation, and emergency action against failure. In practice, there is no fail-safe solution to such problems and various frameworks are being proposed to effectively integrate different methods of complex systems analysis in a problem-driven approach to their solution. Vulnerable Systems reflects the current state of knowledge on the procedures which are being put forward for the risk and vulnerability analysis of critical infrastructures. Classical methods of reliability and risk analysis, as well as new paradigms based on network and systems theory, including simulation, are considered in a dynamic and holistic way. Readers of Vulnerable Systems will benefit from its structured presentation of the current knowledge base on this subject. It will enable graduate students, researchers and safety and risk analysts to understand the methods suitable for different phases of analysis and to identify their criticalities in application.
Safety and Risk Modeling presents the latest theories and methods of safety and risk with an emphasis on safety and risk in modeling. It covers applications in several areas including transportations and security risk assessments, as well as applications related to current topics in safety and risk. Safety and Risk Modeling is a valuable resource for understanding the latest developments in both qualitative and quantitative methods of safety and risk analysis and their applications in operating environments. Each chapter has been written by active researchers or experienced practitioners to bridge the gap between theory and practice and to trigger new research challenges in safety and risk. Topics include: safety engineering, system maintenance, safety in design, failure analysis, and risk concept and modelling. Postgraduate students, researchers, and practitioners in many fields of engineering, operations research, management, and statistics will find Safety and Risk Modeling a state-of-the-art survey of reliability and quality in design and practice.
Reliability and Safety of Complex Technical Systems and Processes offers a comprehensive approach to the analysis, identification, evaluation, prediction and optimization of complex technical systems operation, reliability and safety. Its main emphasis is on multistate systems with ageing components, changes to their structure, and their components reliability and safety parameters during the operation processes. Reliability and Safety of Complex Technical Systems and Processes presents integrated models for the reliability, availability and safety of complex non-repairable and repairable multistate technical systems, with reference to their operation processes and their practical applications to real industrial systems. The authors consider variables in different operation states, reliability and safety structures, and the reliability and safety parameters of components, as well as suggesting a cost analysis for complex technical systems. Researchers and industry practitioners will find information on a wide range of complex technical systems in Reliability and Safety of Complex Technical Systems and Processes. It may prove an easy-to-use guide to reliability and safety evaluations of real complex technical systems, both during their operation and at the design stages.
The ever increasing public demand and the setting-up of national and international legislation on safety assessment of potentially dangerous plants require that a correspondingly increased effort be devoted by regulatory bodies and industrial organisations to collect reliability data in order to produce safety analyses. Reliability data are also needed to assess availability of plants and services and to improve quality of production processes, in particular, to meet the needs of plant operators and/or designers regarding maintenance planning, production availability, etc. The need for an educational effort in the field of data acquisition and processing has been stressed within the framework of EuReDatA, an association of organisations operating reliability data banks. This association aims to promote data exchange and pooling of data between organisations and to encourage the adoption of compatible standards and basic definitions for a consistent exchange of reliability data. Such basic definitions are considered to be essential in order to improve data quality. To cover issues directly linked to the above areas ample space is devoted to the definition of failure events, common cause and human error data, feedback of operational and disturbance data, event data analysis, lifetime distributions, cumulative distribution functions, density functions, Bayesian inference methods, multivariate analysis, fuzzy sets and possibility theory, etc.
This Dictionary of Weighing Terms is a comprehensive practical guide to the terminology of weighing for all users of weighing instruments in industry and science. It explains more than 1000 terms of weighing technology and related areas; numerous illustrations assist understanding. The Dictionary of Weighing Terms is a joint work of the German Federal Institute of Physics and Metrology (PTB) and METTLER TOLEDO, the weighing instruments manufacturer. Special thanks go to Peter Brandes, Michael Denzel, and Dr. Oliver Mack of PTB, and to Richard Davis of BIPM, who with their technical knowledge have contributed to the success of this work. The Dictionary contains terms from the following fields: fundamentals of weighing, application and use of weighing instruments, international standards, legal requirements for weighing instruments, weighing accuracy. An index facilitates rapid location of the required term. The authors welcome suggestions and corrections at www.mt.com/w eighing-terms. Braunschweig (DE) and Greifensee (CH), The Authors Summer 2009 Foreword Since its founding in 1875, the International Bureau of Weights and Measures (BIPM) has had a unique role in mass metrology. The definition of the kilogram depends on an artefact conserved and used within our laboratories. The mass embodied in this - tefact defines the kilogram, and this information is disseminated throughout the world to promote uniformity of measurements. Although the definition of the kilogram may change in the re- tively near future, reflecting the success of new technologies and new requirements, the task of ensuring world-wide uniformity of mass measurements will remain.
Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of "Stochastic Systems" is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives "Stochastic Systems "presents: . A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis . ""Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences . ""Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions "Stochastic Systems "provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners. "
Firefighters and other emergency first responders use a huge variety of highly specialized and critical technologies for personal protection. These technologies, ranging from GPS to environmental sensing to communication devices, often run on different systems with separate power supplies and operating platforms. How these technological components function in a single synergistic system is of critical interest to firefighter end-users seeking efficient tools. Interoperable ESE states that a standardized platform for electronic safety equipment (ESE) is both logical and essential. This book develops an inventory of existing and emerging electronic equipment categorized by key areas of interest to the fire service, documents equipment performance requirements relevant to interoperability, including communications and power requirements, and develops an action plan toward the development of requirements to meet the needs of emergency responders. This book is intended for practitioners as a tool for understanding interoperability concepts and the requirements of the fire service landscape. It offers clear recommendations for the future to help ensure efficiency and safety with fire protection equipment. Researchers working in a related field will also find the book valuable.
Quality Management in Reverse Logistics intends to develop, collect, examine and evaluate a number of quality management (QM) tools and techniques, which can be applied in practice in order to understand, review and improve any closed-loop supply chain process. In other words, the book aims to examine the existing relationship between various well-developed and thoroughly studied quality issues, such as QM, quality assurance, standardization of processes and statistical quality control and the emerging research area of reverse logistics. Quality Management in Reverse Logistics contains modeling and quantitative methods that could be used by practitioners and academics in the reverse logistics industry, as well as a thorough description of QM tools and techniques. The book leads the potential reader to broaden their scope of thinking and acting in the new, promising area of reverse logistics, where QM can be applied.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies..., new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The environmental aspects of all of our society's activities are extremely important if the countryside; the sea and wildernesses are to be fully enjoyed by future generations. Urban waste in all its manifestations presents a particularly difficult disposal problem, which must be tackled conscientiously to prevent long lasting damage to the environment. Technological solutions should be seen as part of the available options. In this monograph, the authors M. R. Katebi, M. A. Johnson and J. Wilkie seek to introduce a comprehensive technological framework to the particular measurement and control problems of wastewater processing plants. Of course the disposal of urban sewage is a long-standing process but past solutions have used options (disposal at sea) which are no longer acceptable. Thus to meet new effluent regulations it is necessary to develop a new technological paradigm based on process control methods, and this is what the authors attempt to provide.
Reliability theory is of fundamental importance for engineers and managers involved in the manufacture of high-quality products and the design of reliable systems. In order to make sense of the theory, however, and to apply it to real systems, an understanding of the basic stochastic processes is indispensable. As well as providing readers with useful reliability studies and applications, Stochastic Processes also gives a basic treatment of such stochastic processes as: the Poisson process, the renewal process, the Markov chain, the Markov process, and the Markov renewal process. Many examples are cited from reliability models to show the reader how to apply stochastic processes. Furthermore, Stochastic Processes gives a simple introduction to other stochastic processes such as the cumulative process, the Wiener process, the Brownian motion and reliability applications. Stochastic Processes is suitable for use as a reliability textbook by advanced undergraduate and graduate students. It is also of interest to researchers, engineers and managers who study or practise reliability and maintenance.
"Dr. Jayshree Pandya, " founder of Risk Group LLC (http: //www.riskgroupllc.com), is ahead of the curve in addressing the changing global fundamentals of the emerging Global Age. Global Age, and its changing global fundamentals has brought complex, chaotic, and turbulent times for every nation-where failures at all levels have come to become self-evident, repetitive, destructive, and potentially hopeless in nature and uncertainty. Nations are caught off guard. From what is visible across nations today, the promise of progress and prosperity for all nations does not seem to have materialized in a Global Age. Instead of progress and prosperity, what is visible today is crisis and catastrophe that is overpowering and overwhelming the capability of most nations to meet their promise of progress and prosperity. Nations are in crisis. This introductory book Global Age: NGIOA @ Risk addresses the global shifts and the changing global fundamentals of Global Age, to lay out much needed foundation of an integrated NGIOA risk governance framework for the coming tomorrow. This book will make a convincing case for the far-reaching need and understanding of global risk concepts, global risk fundamentals, and risk centric integrated NGIOA governance. The integrated NGIOA risk governance approach proposed and discussed in this initiative is rational, practical, and feasible. It will help create a dynamic, vibrant, and sustainable NGIOA economy of a Global Age. This initiative is a first step towards that. "
Quality control is a constant priority in electrical, mechanical, aeronautical, and nuclear engineering - as well as in the vast domain of electronics, from home appliances to computers and telecommunications. Quality Control Applications provides guidance and valuable insight into quality control policies; their methods, their implementation, constant observation and associated technical audits. What has previously been a mostly mathematical topic is translated here for engineers concerned with the practical implementation of quality control. Once the fundamentals of quality control are established, Quality Control Applications goes on to develop this knowledge and explain how to apply it in the most effective way. Techniques are described and supported using relevant, real-life, case studies to provide detail and clarity for those without a mathematical background. Among the many practical examples, two case studies dramatize the importance of quality assurance: A shot-by-shot analysis of the errors made in the Fukushima Daiichi nuclear disaster; and the engineering failure with new technology due to the absence of quality control in an alternative energy project. This clear and comprehensive approach makes Quality Control Applications an essential reference for those studying engineering as well industry professionals involved in quality control across product and system design.
"Applications of Finite Element Methods for Reliability Studies" on ULSI Interconnections provides a detailed description of the application of finite element methods (FEMs) to the study of ULSI interconnect reliability. Over the past two decades the application of FEMs has become widespread and continues to lead to a much better understanding of reliability physics. To help readers cope with the increasing sophistication of FEMs applications to interconnect reliability, "Applications of Finite Element Methods for Reliability Studies on ULSI Interconnections" will: introduce the principle of FEMs;review numerical modeling of ULSI interconnect reliability;describe the physical mechanism of ULSI interconnect reliability encountered in the electronics industry; anddiscuss in detail the use of FEMs to understand and improve ULSI interconnect reliability from both the physical and practical perspective, incorporating the Monte Carlo method. A full-scale review of the numerical modeling methodology used in the study of interconnect reliability highlights useful and noteworthy techniques that have been developed recently. Many illustrations are used throughout the book to improve the reader s understanding of the methodology and its verification. Actual experimental results and micrographs on ULSI interconnects are also included. "Applications of Finite Element Methods for Reliability Studies" on ULSI Interconnections is a good reference for researchers who are working on interconnect reliability modeling, as well as for those who want to know more about FEMs for reliability applications. It gives readers a thorough understanding of the applications of FEM to reliability modeling and an appreciation of the strengths and weaknesses of various numerical models for interconnect reliability."
This monograph and translation from the Russian describes in detail and comments on the fundamentals of metrology. The basic concepts of metrology, the principles of the International System of Units SI, the theory of measurement uncertainty, the new methodology of estimation of measurement accuracy on the basis of the uncertainty concept, as well as the methods for processing measurement results and estimating their uncertainty are discussed from the modern position. It is shown that the uncertainty concept is compatible with the classical theory of accuracy. The theory of random uncertainties is supplemented with their most general description on the basis of generalized normal distribution; the instrumental systematic errors are presented in connection with the methodology of normalization of the metrological characteristics of measuring instruments. The information about modern systems of traceability is given. All discussed theoretical principles and calculation methods are illustrated with examples.
This SpringerBrief reviews current home fire sprinkler system costs in one- and two-family dwellings, mobile homes, and multifamily residential buildings up to four stories. It provides individual community data and qualitative data gained through interviews with community officials, builders, and fire sprinkler contractors. The systems are reviewed against a 2008 benchmark study in order to analyze how the increasingly widespread adoption of national sprinkler ordinances impacts system cost. Using 51 homes in 17 communities, the authors discuss the impact of sprinkler ordinances on home fire sprinkler system cost, including extent of coverage, system types, water sources, permit and inspection fees, and statewide requirements. Methods and community comparisons are presented with the analysis. Home Fire Sprinkler Assessment is intended for practitioners working with sprinkler codes and building regulation safety. Researchers working in a related field will also find the book valuable.
In response to the growing importance of power system security and reliability, Transmission Grid Security proposes a systematic and probabilistic approach for transmission grid security analysis. The analysis presented uses probabilistic safety assessment (PSA) and takes into account the power system dynamics after severe faults. In the method shown in this book the power system states (stable, not stable, system breakdown, etc.) are connected with the substation reliability model. In this way it is possible to: estimate the system-wide consequences of grid faults; identify a chain of events that might lead to blackout; and rank the importance of different substation components at the system level. Transmission Grid Security also presents the main features and basic mathematics of PSA. It provides the reader with up-to-date knowledge of the regulatory issues affecting the security of transmission grids in Europe. Transmission Grid Security gives a practical method for the security analysis of transmission grids, making it a valuable text for engineers and system operators, as well as postgraduate students. It includes basic information and detailed modules for creating a reliability model that takes into account all the basic operations and components needed after grid faults.
Ternary means "based on three". This book deals with reliability investigations of networks whose components subject to failures can be in three states -up, down and middle (mid), contrary to traditionally considered networks having only binary (up/down) components. Extending binary case to ternary allows to consider more realistic and flexible models for communication, flow and supply networks
In recent years, rapid changes and improvements have been witnessed in the field of transformer condition monitoring and assessment, especially with the advances in computational intelligence techniques. Condition Monitoring and Assessment of Power Transformers Using Computational Intelligence applies a broad range of computational intelligence techniques to deal with practical transformer operation problems. The approaches introduced are presented in a concise and flowing manner, tackling complex transformer modelling problems and uncertainties occurring in transformer fault diagnosis. Condition Monitoring and Assessment of Power Transformers Using Computational Intelligence covers both the fundamental theories and the most up-to-date research in this rapidly changing field. Many examples have been included that use real-world measurements and realistic operating scenarios of power transformers to fully illustrate the use of computational intelligence techniques for a variety of transformer modelling and fault diagnosis problems. Condition Monitoring and Assessment of Power Transformers Using Computational Intelligence is a useful book for professional engineers and postgraduate students. It also provides a firm foundation for advanced undergraduate students in power engineering.
An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aided engineering software tools that can be used to evaluate the dynamic performance of the overall plant. PEM Fuel Cells with Bio-Ethanol Processor Systems is intended for use by researchers and advanced students on chemical, electrical-electronic and mechanical engineering courses in which dynamics and control are incorporated with the traditional steady-state coverage of flowsheet synthesis, engineering economics and optimization.
"Recent Advances in System Reliability" discusses developments in modern reliability theory such as signatures, multi-state systems and statistical inference. It describes the latest achievements in these fields, and covers the application of these achievements to reliability engineering practice. The chapters cover a wide range of new theoretical subjects and have been written by leading experts in reliability theory and its applications. The topics include: concepts and different definitions of signatures (D-spectra), their properties and applications to reliability of coherent systems and network-type structures; Lz-transform of Markov stochastic process and its application to multi-state system reliability analysis; methods for cost-reliability and cost-availability analysis of multi-state systems; optimal replacement and protection strategy; and statistical inference. "Recent Advances in System Reliability" presents many examples to illustrate the theoretical results. Real world multi-state systems, such as power generation and transmission, refrigeration, and production systems, are considered in the form of case studies, making the book a useful resource for researchers and postgraduate students."
The measurement of dependability attributes on real systems is a very time-consuming and costly affair, making analytical or simulation modeling the only viable solutions. Dependability of Networked Computer-based Systems explores reliability, availability and safety modeling of networked computer-based systems used in life-critical applications such as avionics, nuclear power plants, automobiles and chemical process industries. Dependability of Networked Computer-based Systems gives an overview of basic dependability modeling concepts and addresses new challenges in dependability modeling of networked computer-based systems, as well as new trends, their capabilities and limitations. It covers a variety of dependability modeling methods: stochastic processes, Markov and semi-Markov models, response-time distribution, stochastic Petri-net-based modeling formalisms, and Monte Carlo simulation models. Dependability of Networked Computer-based Systems provides students and researchers with a detailed overview of dependability models and analysis techniques. Practicing engineers will also find this text a useful guide to decision-making based on system dependability at the design, operation and maintenance stages.
Fatigue and Fracture Reliability Engineering is an attempt to present an integrated and unified approach to reliability determination of fatigue and fracture behaviour, incorporating probability, statistics and other related areas. A series of original and practical approaches, are suggested in Fatigue and Fracture Reliability Engineering, including new techniques in determining fatigue and fracture performances. It also carries out an investigation into static and fatigue properties, and into the failure mechanisms of unnotched and notched CFR composite laminates with different lay-ups to optimize the stacking sequence effect. Further benefits include: a novel convergence-divergence counting procedure to extract all load cycles from a load history of divergence-convergence waves; practical scatter factor formulae to determine the safe fatigue crack initiation and propagation lives from the results of a single full-scale test of a complete structure; and a nonlinear differential kinetic model for describing the dynamical behaviour of an atom at a fatigue crack tip. Fatigue and Fracture Reliability Engineering is intended for practising engineers in marine, civil construction, aerospace, offshore, automotive and chemical industries. It is also useful reading for researchers on doctoral programmes, and is appropriate for advanced undergraduate and postgraduate programmes in any mechanically-oriented engineering discipline. |
You may like...
Estimation of Rare Event Probabilities…
Jerome Morio, Mathieu Balesdent
Hardcover
R3,672
Discovery Miles 36 720
Reliability of Large and Complex Systems
Krzysztof Kolowrocki
Hardcover
|