![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Production engineering > Reliability engineering
Foresight in an engineering business can make the difference between success and failure, and can be vital to the effective control of industrial systems. The authors of this book harness the power of intelligent technologies individually and in combination.
This utterly comprehensive work is thought to be the first to integrate the literature on the physics of the failure of complex systems such as hospitals, banks and transport networks. It has chapters on particular aspects of maintenance written by internationally-renowned researchers and practitioners. This book will interest maintenance engineers and managers in industry as well as researchers and graduate students in maintenance, industrial engineering and applied mathematics.
This book is a carefully developed integration of mathematical models that relate Six Sigma and reliability measures for the first time. Several case studies are used throughout the book to illustrate the application of the models discussed. The strength of Six Sigma is the way in which it structures the problem and the solution methodology to solve the problem. This is probably the only concept to attract the attention of almost all companies across the world irrespective of their business mission.
As an overview of reliability performance and specification in new product development, Product Reliability is suitable for managers responsible for new product development. The methodology for making decisions relating to reliability performance and specification will be of use to engineers involved in product design and development. This book can be used as a text for graduate courses on design, manufacturing, new product development and operations management and in various engineering disciplines.
Reliability theory is a major concern for engineers and managers engaged in making high quality products and designing highly reliable systems. "Advanced Reliability Models and Maintenance Policies" is a survey of new research topics in reliability theory and optimization techniques in reliability engineering. The book introduces partition and redundant problems within reliability models, and provides optimization techniques. The book also indicates how to perform maintenance in a finite time span and at failure detection, and to apply recovery techniques for computer systems. New themes such as reliability complexity and service reliability in reliability theory are theoretically proposed, and optimization problems in management science using reliability techniques are presented. The book is an essential guide for graduate students and researchers in reliability theory, and a valuable reference for reliability engineers engaged both in maintenance work and in management and computer systems.
From its origins in the malachite mines of ancient Egypt, mining has grown to become a global industry which employs many hundreds of thousands of people. Today, the mining industry makes use of various types of complex and sophisticated equipment, for which reliability, maintainability and safety has become an important issue. Mining Equipment Reliability, Maintainability and Safety is the first book to cover these three topics in a single volume. Mining Equipment Reliability, Maintainability and Safety will be useful to a range of individuals from administrators and engineering professionals working in the mining industry to students, researchers and instructors in mining engineering, as well as design engineers and safety professionals. All topics covered in the book are treated in such a manner that the reader requires no previous knowledge to understand the contents. Examples, solutions and test problems are also included to aid reader comprehension.
This book is an attempt to provide a uni?ed methodology to derive models for fatigue life. This includes S-N, ?-N and crack propagation models. This is not a conventional book aimed at describing the fatigue fundamentals, but rather a book in which the basic models of the three main fatigue approaches, the stress-based, the strain-based and the fracture mechanics approaches, are contemplated from a novel and integrated point of view. On the other hand, as an alternative to the preferential attention paid to deterministic models based on the physical, phenomenological and empirical description of fatigue, their probabilistic nature is emphasized in this book, in which stochastic fatigue and crack growth models are presented. This book is the result of a long period of close collaborationbetween its two authors who, although of di?erent backgrounds, mathematical and mechanical, both have a strong sense of engineering with respect to the fatigue problem. When the authors of this book ?rst approached the fatigue ?eld in 1982 (twenty six years ago), they found the following scenario: 1. Linear, bilinear or trilinear models were frequently proposed by relevant laboratoriesandacademiccenterstoreproducetheW] ohler?eld. Thiswas the case of well known institutions, which justi?ed these models based on clientrequirementsorpreferences. Thisledtotheinclusionofsuchmodels and methods as, for example, the up-and-down, in standards and o?cial practical directives (ASTM, Euronorm, etc.), which have proved to be unfortunate."
This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.
Although the avoidance of hot cracking still represents a major topic in modern fabrication welding components, the phenomena have not yet been fully understood. Through the 20 individual contributions from experts all over the world the present state of knowledge about hot cracking during welding is defined, and the subject is approached from four different viewpoints. The first chapter provides an overview of the various hot cracking phenomena. Different mechanisms of solidification cracking proposed in the past decades are summarized and new insight is particularly given into the mechanism of ductility dip cracking. The effects of different alloying elements on the hot cracking resistance of various materials are shown in the second chapter and, as a special metallurgical effect, the initiation of stress corrosion cracking at hot cracks has been highlighted. The third chapter outlines how numerical analyses and other modelling techniques can be utilized to describe hot cracking phenomena and how such results might contribute to the explanation of the mechanisms. Various hot cracking test procedures are presented in the final chapter with a special emphasis on standardization. For the engineering and natural scientists in research and development the book provides both, new insight and a comprehensive overview of hot cracking phenomena in welds. The contributions additionally give numerous individual solutions and helpful advice for international welding engineers to avoid hot cracking in practice. Furthermore, it represents a very helpful tool for upper level metallurgical and mechanical engineering students.
The pilot study on Food Chain Security was launched in 2003 by NATO Public Diplomacy Division Science for Peace and Security Section (SPS) under the leadership of Turkey. The purpose of the study was to study the safety and security of food stuffs in the face of their careless/ignorant handling as well as against expected terrorist attacks at the system which may destroy and/or degrade it at the source during distribution, processing and in the consumption phase. The study included the protective and response measures which may have to be taken to reduce the risk and mitigate the consequences of these threats to the food system. The final outputs of this pilot study were agreed to be mainly: To allow comparison between country partners To identify common weaknesses of the food systems As a result of the terrible September 11, 2001 attacks in the United States the nature of the terrorist threat appears to be more uncertain and diffused, therefore the terrorist threat against the food system which comprises production, processing, distribution, restaurants, and retail can be very diverse and unpredictable and involve chemical, biological, and radiological agents of various kinds. Preparing for all possible contingencies was not practical, so a "risk management approach" was used in this study based on risk management principles that acknowledge while risk generally cannot be eliminated, enhancing protection from known or potential threats can reduce it.
The material in this book was first presented as a one-semester course in Relia bility Theory and Preventive Maintenance for M.Sc. students of the Industrial Engineering Department of Ben Gurion University in the 1997/98 and 1998/99 academic years. Engineering students are mainly interested in the applied part of this theory. The value of preventive maintenance theory lies in the possibility of its imple mentation, which crucially depends on how we handle statistical reliability data. The very nature of the object of reliability theory - system lifetime - makes it extremely difficult to collect large amounts of data. The data available are usu ally incomplete, e.g. heavily censored. Thus, the desire to make the course material more applicable led me to include in the course topics such as mod eling system lifetime distributions (Chaps. 1,2) and the maximum likelihood techniques for lifetime data processing (Chap. 3). A course in the theory of statistics is aprerequisite for these lectures. Stan dard courses usually pay very little attention to the techniques needed for our purpose. A short summary of them is given in Chap. 3, including widely used probability plotting. Chapter 4 describes the most useful and popular models of preventive main tenance and replacement. Some practical aspects of applying these models are addressed, such as treating uncertainty in the data, the role of data contamina tion and the opportunistic scheduling of maintenance activities."
Following my graduation in physical organic chemistry at the University of Amst- dam, I started to work at the Royal Dutch Shell Laboratories in Amsterdam. My first assignment was research in the field of detergents and industrial chemicals. It was followed by development work on thermal wax cracking for production of C - C 2 14 olefins and on acid-catalyzed synthesis of carboxylic acids from C - C olefins. 3 6 Then, I made a significant change to analytical chemistry, first at Shell's process development department and later in the chemical engineering department of Delft University of Technology. In both departments, there was a large variety of analy- cal techniques and development of new methods for automated analysis of small process streams. It was the time that gas chromatography conquered the world. In this field, a firm basis was given by Henk Boer, Arie Kwantes and Frits Zuiderweg at Shell Research Laboratories in Amsterdam, both for packed and for capillary c- umns. The potential of gas chromatography was huge and, therefore, also in Delft, its use increased enormously. Moreover, the growth of this technique was facilitated significantly by the rapidly developing electronics industry. It not only led to digital peak integrators and personal computers but also enabled complex measurement techniques. In addition, I became involved in surface area and porosity characteri- tion of catalysts and adsorbents, on which topic the research had been initiated by Prof. J. H. de Boer.
Non destructive testing aimed at monitoring, structural identification and di- nostics is of strategic importance in many branches of civil and mechanical - gineering. This type of tests is widely practiced and directly affects topical issues regarding the design of new buildings and the repair and monitoring of existing ones. The load bearing capacity of a structure can now be evaluated using well established mechanical modelling methods aided by computing facilities of great capability. However, to ensure reliable results, models must be calibrated with - curate information on the characteristics of materials and structural components. To this end, non destructive techniques are a useful tool from several points of view. Particularly, by measuring structural response, they provide guidance on the validation of structural descriptions or of the mathematical models of material behaviour. Diagnostic engineering is a crucial area for the application of non destructive testing methods. Repeated tests over time can indicate the emergence of p- sible damage occurring during the structure's lifetime and provide quantitative estimates of the level of residual safety.
It is a pleasure to introduce to the reader this new Marine Painting Manual. The previous edition, entitled Ship Painting Manual, was published in 1975. Since then a number of new technological developments have taken place. Also, standards with regard to safety, health and the environment have become more severe. These changes called for a thoroughly revised and updated Marine Painting Manual. I believe that the editor should be congratulated on having completed this task in such a commendable way. I hope that this new volume will find as enthusiastic a response among those concerned with maritime affairs as its predecessor did some fifteen years ago. Dr. Jan Raat Director Netherlands Foundation for the Co-ordination of Maritime Research INTRODUCTION The "Marine Painting Manual" sets out to provide clear guidelines for the effective protection of marine structures, ocean-going vessels and offshore platforms. Painting is a high cost procedure and is a crucial factor in determining the life and subsequent maintenance of steel structures in the marine environment. The book is a follow-up to the "Ship Painting Manual" published in 1975. It has been completely revised, partly rewritten and an additional chapter on offshore structures included. The present volume contains detailed and up-to-date information on all aspects of the preparation and painting for the protection of marine structures. The following chapters are included: 1. The protection of different parts of ships under construction. 2. The protection of different parts of offshore structures under construction. 3. Surface preparation.
This book reviews problems associated with rare events arising in a wide range of circumstances, treating such topics as how to evaluate the probability an insurance company will be bankrupted, the lifetime of a redundant system, and the waiting time in a queue. Well-grounded, unique mathematical evaluation methods of basic probability characteristics concerned with rare events are presented, which can be employed in real applications, as the volume also contains relevant numerical and Monte Carlo methods. The various examples, tables, figures and algorithms will also be appreciated. Audience: This work will be useful to graduate students, researchers and specialists interested in applied probability, simulation and operations research.
Survival analysis is a highly active area of research with applications spanning the physical, engineering, biological, and social sciences. In addition to statisticians and biostatisticians, researchers in this area include epidemiologists, reliability engineers, demographers and economists. The economists survival analysis by the name of duration analysis and the analysis of transition data. We attempted to bring together leading researchers, with a common interest in developing methodology in survival analysis, at the NATO Advanced Research Workshop. The research works collected in this volume are based on the presentations at the Workshop. Analysis of survival experiments is complicated by issues of censoring, where only partial observation of an individual's life length is available and left truncation, where individuals enter the study group if their life lengths exceed a given threshold time. Application of the theory of counting processes to survival analysis, as developed by the Scandinavian School, has allowed for substantial advances in the procedures for analyzing such experiments. The increased use of computer intensive solutions to inference problems in survival analysis~ in both the classical and Bayesian settings, is also evident throughout the volume. Several areas of research have received special attention in the volume.
21 years ago it was a joint idea with Hans Rottenkolber to organize a workshop dedicated to the discussion of the latest results in the automatic processing of fringe patterns. This idea was promoted by the insight that automatic and high precision phase measurement techniques will play a key role in all future industrial and scientific applications of optical metrology. A couple of months later more than 50 specialists from East and West met in East Berlin, the capital of the former GDR, to spend 3 days with the discussion of new principles of fringe processing. In the stimulating atmoshere the idea was born to repeat the workshop and to organize the meeting in an olympic schedule. And thus meanwhile 20 years have been passed and we have today Fringe number six. However, such a workshop takes place in a dynamic environment. Therefore the main topics of the previous events were always adapted to the most interesting subjects of the new period. In 1993 the workshop took place in Bremen and was dedicated to new principles of optical shape measurement, setup calibration, phase unwrapping and nondestructive testing, while in 1997 new approaches in multi-sensor metrology, active measurement strategies and hybrid processing technologies played a central role. 2001, the first meeting in the 21st century, was focused to optical methods for micromeasurements, hybrid measurement technologies and new sensor solutions for industrial inspection.
Experts from academia and government who are actively engaged in research in the area of risk communication present a compendium of cases that give information and allow the development of strategies to improve the communication of scientific information to the public. The cases span Western, Central and Eastern Europe, covering such areas as nuclear waste, heavy metal contamination, landfill siting, risk perception, global warming, international health for all, and more. The conclusions and recommendations presented here are being used to develop future activities to further explore this area of risk communication as an international study. Audience: Scientists, risk communicators, psychologists, toxicologists, health professionals, and anyone who has an interest in public communication on scientific uncertainty.
There is today a wide range of pubLications avaiLabLe on the theory of reLiabiLity and the technique of ProbabiListic Safety AnaLysis (PSA). To pLace this work properLy in this context, we must recaLL a basic concept underLying both theory and technique, that of redundancy. ReLiabiLity is something which can be designed into a system, by the introduction of redundancy at appropriate points. John Von Neumann's historic paper of 1952 'ProbabiListic Logics and the Synthesis of ReLiabLe Organisms from UnreLiabLe Components" has served as inspiration for aLL subsequent work on systems reLiabiLity. This paper sings the praises of redundancy as a means of designing reLiabiLity into systems, or, to use Von Neumann's words, of minimising error. Redundancy, then, is a fundamentaL characteristic which a designer seeks to buiLd in by using appropriate structuraL characteristics of the 'modeL" or representation which he uses for his work. But any modeL is estabLished through a process of de Limination and decomposition. FirstLy, a "Universe of Discourse" is delineated; its component eLements are then separated out; and moreover in a probabiListic framework for each eLement each possibLe state is defined and assigned an appropriate possibiLity measure caLLed probability.
This book is intended to provide the interested reader with basic information on various issues of the dependability analysis and evaluation of engineering systems with the principal goal to help the reader perform such an analysis and evaluation. By the definition of the IEC International Standard 50(191) dependability is the collective term used to describe the availability peiformance and its influencing factors: reliability peiformance, maintainability peiformance and maintenance support performance. Dependability is a term used for a general description of system performance but not a quality which could be expressed by a single quantitative measure. There are several other quantitative terms, such as reliability, unreliability, time-specific and steady-state availability and unavailability, which together form a basis for evaluating the dependability of a system. A system is taken as dependable if it satisfies all requirements of the customers with regard to various dependability performances and indices. The dependability deals with failures, repairs, preventive maintenance as well as with costs associated with investment and service interruptions or mission failures. Therefore, it is a very important attribute of system quality. The dependability evaluation is strongly based upon experience and statistical data on the behavior of a system and of its elements. Using past experience with the same or similar systems and elements, the prospective operation may be predicted and improved designs and constructions can be conceived. Hence, the dependability analysis makes it possible to learn from the past for better future solutions.
Industrial development is essential to improvement of the standard of living in all coun tries. In a given region, old and new plants, processes, and technologies have to coexist Technological penetration and substitution processes are generally taking place; they are entirely dynamic and this trend is going to stay like this. People's health and the environment can be affected, directly or indirectly, by rou tine waste discharges or by accidents. A series of recent major industrial accidents and the effect of poUution highlighted, once again, the need for better management of rou tine and accidental risks. Moreover, the existence of natural hazards complicate even more the situation in any given region. Managing the hazards of modern technological systems has become a key activity in highly industrialized countries. Decision makers are often confronted with complex issues concerning economic and social development, industrialization and associated infrastructure needs, population and land use planning. Such issues have to be ad dressed in such a way that ensures that public health wiD not be disrupted or substan tially degraded."
Increasing petroleum costs, supply uncertainties, political factors, and environmental damage are forcing a radical move towards alternatives. This book provides an up-to-date review of the socio-economic, political, and environmental factors forcing a new approach to global energy developments and use. It reviews alternative fuel and energy conversion technology developments that will help create a cleaner and more secure future.
"Recent Advances in Reliability and Quality in Design" presents the latest theories and methods of reliability and quality, with emphasis on reliability and quality in design and modelling. Each chapter is written by active researchers and professionals with international reputations, providing material which bridges the gap between theory and practice to trigger new practices and research challenges. Postgraduates, researchers, and practitioners in reliability engineering, maintenance engineering, quality engineering, operations research, industrial and systems engineering, mechanical engineering, computer engineering, management, and statistics will find this book a state-of-the-art survey of reliability and quality in design and practices.
The only recent book to cover "Stage 3" warranty management, linking strategic and operational aspects for manufactured products. Shows how to make warranty management an effective tool for enhancing customer satisfaction. Uses minimal mathematics and presents accounting and legal aspects of warranty management in an easily understandable style. Written by two of the world 's leading experts in warranty management.
Safety is one of the most important issues today. Recent international standards such as ISO and IEC have consistently advocated goal-based procedures of designing systems for better safety. The procedure assumes safety goals are explicitly established by international organizations, individual nations, particular industries or private companies. Satisfying Safety Goals by Modern Reliability Engineering is a methodological approach to the goal-based safety design procedure that will soon be an international requirement. Satisfying Safety Goals by Modern Reliability Engineering primarily focuses on the quantitative aspects of international standards. The methodologies presented are illustrated through the use of case studies. The book also:
Satisfying Safety Goals by Modern Reliability Engineering will be a good reference for senior undergraduates, postgraduates and researchers in the fields of reliability engineering and safety engineering and risk assessment. It will also be of interest to reliability engineers, practitioners in industry and regulatory authorities. |
You may like...
Air Traffic Control Automated Systems
Bestugin A.R., Eshenko A.A., …
Hardcover
R3,133
Discovery Miles 31 330
Principles of Performance and…
Lance Fiondella, Antonio Puliafito
Hardcover
R5,274
Discovery Miles 52 740
Estimation of Rare Event Probabilities…
Jerome Morio, Mathieu Balesdent
Hardcover
R3,672
Discovery Miles 36 720
|