![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Production engineering > Reliability engineering
The legislative requirement for cannabis to undergo laboratory testing has followed legalization of medical and recreational use in every U.S. state to date. Cannabis safety testing is a new investment opportunity within the emerging cannabis market that is separate from cultivation, processing, and distribution, allowing individuals and organizations who may have been reluctant to enter previously a new entry route to the cannabis space. However, many of the costs, timelines, operational requirements, and compliance issues are overlooked by people who have not been exposed to regulated laboratory testing. Cannabis Laboratory Fundamentals provides an in-depth review of the key issues that impact cannabis testing laboratories and provides recommendations and solutions to avoid common - but expensive - mistakes. The text goes beyond methodology to include sections on economics, regulation, and operational challenges, making it useful for both new and experienced cannabis laboratory operators, as well as all those who want to understand the opportunities and risks of this industry.
This volume addresses a variety of issues on traffic safety policy, ranging from issues of climate change, urban equity, and transport safety, in a broad global and societal context, while retaining situation-specific details. Written by international experts on issues of transportation and traffic safety, it will be of special interest to advanced researchers in the engineering and planning disciplines working on these issues as well as policy makers concerned with setting up institutions and legislations for traffic safety.
This book presents selected papers from the 3rd Global Summit of Research Institutes for Disaster Risk Reduction - Expanding the Platform for Bridging Science and Policy Making, which was held at the Disaster Prevention Research Institute (DPRI), Kyoto University, Uji Campus from 19 to 21 March 2017. It was organised by the Global Alliance of Disaster Research Institutes (GADRI), which was established soon after the second Global Summit and the UN World Conference on Disaster Risk Reduction in March 2015, and is intended to support the implementation of the Sendai Framework for Disaster Risk Reduction 2015-2030. The conference not only provided a platform for discussion and exchange of information on key current and future research projects on disaster risk reduction and management, but also promoted active dialogues through group discussion sessions that addressed various disaster research disciplines. In this book, authors from various disciplines working at governmental and international organisations provide guidance to the science and technical community, discuss the current challenges, and evaluate the research needs and gaps in the context of climate change, sustainable development goals and other interlinked global disaster situations. Expert opinions from practitioners and researchers provide valuable insights into how to connect and engage in collaborative research with the international science and technical communities and other stakeholders to achieve the goals set out in the agenda of the Sendai Framework for Disaster Risk Reduction 2015-2030. In addition, case studies and other evidence-based research papers highlight ongoing research projects and reflect the challenges encountered in information sharing by various stakeholders in the context of disaster risk reduction and management. Chapter "Science and technology commitment to the implementation of the Sendai Framework for Disaster Risk Reduction 2015-2030" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
[FIRST EDITION] This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Features: introduces the mathematical background for monocular and multiple view geometry; describes the main techniques for image processing used in X-ray testing; presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image; examines a range of known X-ray image classifiers and classification strategies; discusses some basic concepts for the simulation of X-ray images and presents simple geometric and imaging models that can be used in the simulation; reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products; provides supporting material at an associated website, including a database of X-ray images and a Matlab toolbox for use with the book's many examples.
This book comprises select proceedings of the international conference ETAEERE 2020, and focuses on contemporary issues in energy management and energy efficiency in the context of power systems. The contents cover modeling, simulation and optimization based studies on topics like medium voltage BTB system, cost optimization of a ring frame unit in textile industry, rectenna for RF energy harvesting, ecology and energy dimension in infrastructural designs, study of AGC in two area hydro thermal power system, energy-efficient and reliable depth-based routing protocol for underwater wireless sensor network, and power line communication. This book can be beneficial for students, researchers as well as industry professionals.
This book introduces human factors engineering (HFE) principles, guidelines, and design methods for medical device design. It starts with an overview of physical, perceptual, and cognitive abilities and limitations, and their implications for design. This analysis produces a set of human factors principles that can be applied across many design challenges, which are then applied to guidelines for designing input controls, visual displays, auditory displays (alerts, alarms, warnings), and human-computer interaction. Specific challenges and solutions for various medical device domains, such as robotic surgery, laparoscopic surgery, artificial organs, wearables, continuous glucose monitors and insulin pumps, and reprocessing, are discussed. Human factors research and design methods are provided and integrated into a human factors design lifecycle, and a discussion of regulatory requirements and procedures is provided, including guidance on what human factors activities should be conducted when and how they should be documented.This hands-on professional reference is an essential introduction and resource for students and practitioners in HFE, biomedical engineering, industrial design, graphic design, user-experience design, quality engineering, product management, and regulatory affairs. Teaches readers to design medical devices that are safer, more effective, and less error prone; Explains the role and responsibilities of regulatory agencies in medical device design; Introduces analysis and research methods such as UFMEA, task analysis, heuristic evaluation, and usability testing.
This book highlights the main features of shipbuilding management which lead to successful completion of shipbuilding projects. A brief review of the market context for the industry, its historical development are given to explain how shipbuilding arrived at its current structure. First pre-production including design, planning, cost estimating, procurement of materials and sub-contracting. Then, the production sequence outlines part preparation, hull assembly and construction, outfitting and painting, testing and completion. The importance of human resources and management organisation are explained. Building a ship is a complex project, so the principles of project management are described, first in general terms and then with specific reference to their application in shipbuilding. Finally managing the progress of a shipbuilding project and achieving completion are emphasised.
This book presents recent results on fault diagnosis and condition monitoring of airborne electromechanical actuators, illustrating both algorithmic and hardware design solutions to enhance the reliability of onboard more electric aircraft. The book begins with an introduction to the current trends in the development of electrically powered actuation systems for aerospace applications. Practical examples are proposed to help present approaches to reliability, availability, maintainability and safety analysis of airborne equipment. The terminology and main strategies for fault diagnosis and condition monitoring are then reviewed. The core of the book focuses on the presentation of relevant case studies of fault diagnosis and monitoring design for airborne electromechanical actuators, using different techniques. The last part of the book is devoted to a summary of lessons learned and practical suggestions for the design of fault diagnosis solutions of complex airborne systems. The book is written with the idea of providing practical guidelines on the development of fault diagnosis and monitoring algorithms for airborne electromechanical actuators. It will be of interest to practitioners in aerospace, mechanical, electronic, reliability and systems engineering, as well as researchers and postgraduates interested in dynamical systems, automatic control and safety-critical systems. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This edited volume explores the fundamental aspects of the dark web, ranging from the technologies that power it, the cryptocurrencies that drive its markets, the criminalities it facilitates to the methods that investigators can employ to master it as a strand of open source intelligence. The book provides readers with detailed theoretical, technical and practical knowledge including the application of legal frameworks. With this it offers crucial insights for practitioners as well as academics into the multidisciplinary nature of dark web investigations for the identification and interception of illegal content and activities addressing both theoretical and practical issues.
The rapid development of China's transportation system brings huge challenges to fire safety issues. Fire Protection Engineering Applications for Large Transportation Systems in Chinaanalyzes key fire issues for large transportation systems in rail, airport, tunnels, etc. and offers solutions and best practices for similar projects throughout the world. The first monograph to look at transportation hub fire issues in China looks at architecture features, occupancy and area classification, fire hazard and design difficulties based on local code design. The book then provides case studies to identity the common problems and introduces possible solutions in order to develop a best practice for future design and improvement. The authors worked directly on the case studies provided, which include the Hongqiao airport transportation hub, Beijing and Pudoing airport PBD study, subways in different cities and the high speed train system Cross China. They use their research and investigation to form the theoretical basis for the fire design of urban large transportation hubs and the establishment of corresponding fire codes. The cutting-edge technologies discussed include: Smoke control strategy in complicated multiple function space, assistant evacuation performance based study new technology on fire separation new fire products for smoke detection and intelligent guiding system for evacuation BIM and internet of things used to improve fire management
This book addresses the shelf life of foods, a key factor in determining how food is distributed and consequently where and when different food products are available for consumption. Shelf life is determined by several factors, including microbiological, chemical, physical, and organoleptic deterioration. Often these factors are interrelated and interdependent. The editors of this volume focus specifically on the microbial factors related to shelf life of perishable foods and food commodities. This allows for more detailed coverage of foodborne bacterial pathogens and spoilage microorganisms of concern. The initial part of the book covers the why and how of shelf life determination as well as the specific microbial pathogens and spoilage microorganisms of concern for perishable foods. Contributors address topics such as the techniques utilized for determination of shelf life, the frequency of shelf life testing for different products, the interpretation of data to make shelf life determinations, and management of shelf life of food products from the perspective of the food producer, distributor, retailer, and regulator. Three key areas impacting shelf life are addressed in detail: sanitation, processing, and packaging. The sanitation chapter explains the necessary components of cleaning and sanitizing to assure a hygienic processing environment and why that is critical to shelf life control. Traditional processing procedures are reviewed and advanced processing technologies are explored. Materials used in food packaging and the utilization of traditional and activated food packaging by product type are covered in detail. The latter two chapters of the book delve into newer techniques of analysis and explore the microbiome of food products. Implications of microbial ecology and microbial quantification in food products are discussed in chapters on genomics and in the changing dogma of meat shelf life. The primary audience for this work includes food industry quality and food safety technicians, managers, directors, and executives responsible for shelf life. Academicians and governmental researchers involved in research and teaching about food safety and quality will also find the material relevant and useful.
This book presents a number of approaches to Fine-Kinney-based multi-criteria occupational risk-assessment. For each proposed approach, it provides case studies demonstrating their applicability, as well as Python coding, which will enable readers to implement them into their own risk assessment process. The book begins by giving a review of Fine-Kinney occupational risk-assessment methods and their extension by fuzzy sets. It then progresses in a logical fashion, dedicating a chapter to each approach, including the fuzzy best and worst method, interval-valued Pythagorean fuzzy VIKOR and interval type-2 fuzzy QUALIFLEX. This book will be of interest to professionals and researchers working in the field of occupational risk management, as well as postgraduate and undergraduate students studying applications of fuzzy systems.
The book focuses on the transient modelling, stability analysis and control of power electronic systems, since these systems face severe safe operation problems the during transient period. It discusses both theoretical analysis and practical applications, highlighting the transient characteristics of converters with different control strategies, and proposes transient modelling and model reduction methods. Furthermore, it classifies the transient stability problems of the system to help the readers gain an understanding of the basic theoretical methods for analysing the power electronic system, at the same time providing sufficient detail to enable engineers to design such systems. Comprehensively describing theoretical analyses, ranging from system modelling and stability analysis to transient control, the book is a valuable resource for researchers, engineers and graduate students in fields of transient modelling, stability analysis and control of power electronic systems.
This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.
This book proposes new control and protection schemes to improve the overall stability and security of future wide-area power systems. It focuses on the high penetration levels of renewable energy sources and distributed generation, particularly with the trend towards smart grids. The control methods discussed can improve the overall stability in normal and abnormal operation conditions, while the protection methods presented can be used to ensure the secure operation of systems under most severe contingencies. Presenting stability, security, and protection methods for power systems in one concise volume, this book takes the reader on a journey from concepts and fundamentals to the latest and future trends in each topic covered, making it an informative and intriguing read for researchers, graduate students, and practitioners alike.
This book presents the proceedings of the International Conference on Health, Safety, Fire, Environment, and Allied Sciences. It highlights latest developments in the field of science and technology aimed at improving health and safety in the workplace. The volume comprises content from leading scientists, engineers, and policy makers discussing issues relating to industrial safety, fire hazards and their management in industry, forests and other settings. Also dealt with are issues of occupational health in engineering, process and agricultural industry and protection against incidents of arson and terror attacks. The contents of this volume will be of interest to researchers, practitioners, and policy makers alike.
This book focuses on how to keep blast furnaces running stably and smoothly with low consumption and long operating life spans. Assessing and adjusting blast furnace performance are key to operation. The book describes in detail cases of both successful and failed blast furnace operation. It also demonstrates various phenomena and "symptoms" in the smelting process that have rarely been studied before, e.g. abnormal gas distribution, bending loss of tuyere, slag crust fall-off, blast furnace thickening, and hearth accumulation. As such, it will help readers understand internal phenomena in blast furnaces, providing a basis for developing intelligent control and management systems.
Resilience has become an important topic on the safety research agenda and in organizational practice. Most empirical work on resilience has been descriptive, identifying characteristics of work and organizing activity which allow organizations to cope with unexpected situations. Fewer studies have developed testable models and theories that can be used to support interventions aiming to increase resilience and improve safety. In addition, the absent integration of different system levels from individuals, teams, organizations, regulatory bodies, and policy level in theory and practice imply that mechanisms through which resilience is linked across complex systems are not yet well understood. Scientific efforts have been made to develop constructs and models that present relationships; however, these cannot be characterized as sufficient for theory building. There is a need for taking a broader look at resilience practices as a foundation for developing a theoretical framework that can help improve safety in complex systems. This book does not advocate for one definition or one field of research when talking about resilience; it does not assume that the use of resilience concepts is necessarily positive for safety. We encourage a broad approach, seeking inspiration across different scientific and practical domains for the purpose of further developing resilience at a theoretical and an operational level of relevance for different high-risk industries. The aim of the book is twofold: 1. To explore different approaches for operationalization of resilience across scientific disciplines and system levels. 2. To create a theoretical foundation for a resilience framework across scientific disciplines and system levels. By presenting chapters from leading international authors representing different research disciplines and practical fields we develop suggestions and inspiration for the research community and practitioners in high-risk industries. This book is Open Access under a CC-BY licence.
This book comprises select proceedings of the National Conference on Recent Advances in Traffic Engineering (RATE 2018) with technical papers on the themes of traffic operation control and management, traffic safety and vulnerable road users, and sustainable transportation. It covers a wide range of topics, including advanced traffic data collection methods, big data analysis, mix-traffic characterization and modelling, travel time reliability, scenario of pedestrian and non-motorised vehicles (NMVs) traffic, regional traffic growth modelling, and applications of intelligent transportation systems (ITS) in traffic management. The contents of this book offer up-to-date and practical knowledge on different aspects of traffic engineering, which is useful for students, researchers as well as practitioners.
This book discusses condition based monitoring of rotating machines using intelligent adaptive systems. The book employs computational intelligence and fuzzy control principles to deliver a module that can adaptively monitor and optimize machine health and performance. This book covers design and performance of such systems and provides case studies and data models for fault detection and diagnosis. The contents cover everything from optimal sensor positioning to fault diagnosis. The principles laid out in this book can be applied across rotating machinery such as turbines, compressors, and aircraft engines. The adaptive fault diagnostics systems presented can be used in multiple time and safety critical applications in domains such as aerospace, automotive, deep earth and deep water exploration, and energy.
This book comprises select peer-reviewed contributions from the 6th International Conference on Production and Industrial Engineering (CPIE - 2019). The volume focuses on latest research in the field of Industrial and Systems Engineering, and its allied areas. Articles on variety of topics such as Human Factors Engineering, Lean Manufacturing, Six Sigma, Logistics and Supply Chain Management, Operations Research, Quality Engineering, Measurement and Control, Reliability and Maintenance Engineering, Green Supply Chain Management, Modelling and Simulation, Sustainability, Technology Management, Agile and Flexible Manufacturing, Technology Management and Computer Aided Manufacturing are discussed in this book. Given the range of topics covered, the book will be useful for students, researchers, and professionals interested in different areas of Industrial and Systems Engineering.
This current book comprises state-of-the-art research results in the field of mechatronics and reliable systems engineering, gathering papers from almost all continents. Since the chapters represent contributions of research scholars who work in both governmental financed institutions and in the business environment, one could infer that they certainly reflect a clear picture of the developments in these cutting-edge sciences. Moreover, the contributions are not limited to mechatronics, as nowadays it has grown to embed all smart technical sciences. Medical applications based on nano-technologies - seemingly the most promising of all newly developed branches - could not be left out of this work. It is our belief that the book is useful to both students, who want to learn from the best scholars (as most of the authors hold a Ph.D. degree and are well-known professors), and to researchers in all areas of smart engineering, who will definitely find here hot topics meant to inspire them in their line of work.
This book presents the latest research in the fields of reliability theory and its applications, providing a comprehensive overview of reliability engineering and discussing various tools, techniques, strategies and methods within these areas. Reliability analysis is one of the most multidimensional topics in the field of systems reliability engineering, and while its rapid development creates opportunities for industrialists and academics, it is also means that it is hard to keep up to date with the research taking place. By gathering findings from institutions around the globe, the book offers insights into the international developments in the field. As well as discussing the current areas of research, it also identifies knowledge gaps in reliability theory and its applications and highlights fruitful avenues for future research. Covering topics from life cycle sustainability to performance analysis of cloud computing, this book is ideal for upper undergraduate and postgraduate researchers studying reliability engineering.
This proceedings book discusses state-of-the-art research on uncertainty quantification in mechanical engineering, including statistical data concerning the entries and parameters of a system to produce statistical data on the outputs of the system. It is based on papers presented at Uncertainties 2020, a workshop organized on behalf of the Scientific Committee on Uncertainty in Mechanics (Mecanique et Incertain) of the AFM (French Society of Mechanical Sciences), the Scientific Committee on Stochastic Modeling and Uncertainty Quantification of the ABCM (Brazilian Society of Mechanical Sciences) and the SBMAC (Brazilian Society of Applied Mathematics).
This book talks about the dynamics of the surface water-groundwater contaminant interactions under different environmental conditions across the world. The contents of the book highlight trends of monitoring, prediction, awareness, learning, policy, and mitigation success. The book provides a description of the background processes and factors controlling resilience, risk, and response of water systems, contributing to the development of more efficient, sustainable technologies and management options. It integrates methodologies and techniques such as data science and engineering, remote sensing, modelling, analytics, synthesis and indices, disruptive innovations and their utilization in water management, policy making, and mitigation strategies. The book is intended to be a comprehensive reference for students, professionals, and researchers working on various aspects of science and technology development. It will also prove a useful resource for policy makers and implementation specialists. |
You may like...
Advances in System Reliability…
Mangey Ram, J. Paulo Davim
Paperback
Estimation of Rare Event Probabilities…
Jerome Morio, Mathieu Balesdent
Hardcover
R3,672
Discovery Miles 36 720
|