![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Science: general issues > Scientific standards
This thesis describes advances in the understanding of HgCdTe detectors. While long wave (15 m) infrared detectors HgCdTe detectors have been developed for military use under high background irradiance, these arrays had not previously been developed for astronomical use where the background irradiance is a billion times smaller. The main pitfall in developing such arrays for astronomy is the pixel dark current which plagues long wave HgCdTe. The author details work on the success of shorter wavelength development at Teledyne Imaging Sensors, carefully modeling the dark current-reverse bias voltage curves of their 10 m devices at a temperature of 30K, as well as the dark current-temperature curves at several reverse biases, including 250 mV. By projecting first to 13 and then 15 m HgCdTe growth, values of fundamental properties of the material that would minimize tunneling dark currents were determined through careful modeling of the dark current-reverse bias voltage curves, as well as the dark current-temperature curves. This analysis was borne out in the 13 m parts produced by Teledyne, and then further honed to produce the necessary parameters for the 15 m growth. The resulting 13 m arrays are being considered by a number of ground-based astronomy research groups.
This book gives the background to differential-pressure flow measurement and goes through the requirements explaining the reason for them. For those who want to use an orifice plate or a Venturi tube the standard ISO 5167 and its associated Technical Reports give the instructions required. However, they rarely tell the users why they should follow certain instructions. This book helps users of the ISO standards for orifice plates and Venturi tubes to understand the reasons why the standards are as they are, to apply them effectively, and to understand the consequences of deviations from the standards.
This book gathers, for the first time, an overview of nearly all of the magnetic sensors that exist today. The book is offering the readers a thorough and comprehensive knowledge from basics to state-of-the-art and is therefore suitable for both beginners and experts. From the more common and popular AMR magnetometers and up to the recently developed NV center magnetometers, each chapter is describing a specific type of sensor and providing all the information that is necessary to understand the magnetometer behavior including theoretical background, noise model, materials, electronics, design and fabrication techniques, etc.
Scientific communication depends primarily on publishing in journals. The most important indicator to determine the influence of a journal is the Impact Factor. Since this factor only measures the average number of citations per article in a certain time window, it can be argued that it does not reflect the actual value of a periodical. This book defines five dimensions, which build a framework for a multidimensional method of journal evaluation. The author is winner of the Eugene Garfield Doctoral Dissertation Scholarship 2011.
This book describes systematically telemetry theory and methods for aircraft in flight test. Test targets of telemetry in flight test include airplanes, helicopters, unmanned aerial vehicles, aerostatics, carrier-based aircraft, airborne equipment (systems), weapon systems, (powered) aircraft scale models, aircraft external stores (e.g., nacelle, auxiliary tanks), and ejection seats and so on. The book collects the author's telemetry research work and presents methods that have been verified in real-world tests. The book has eight chapters: the first three discuss the theoretical basis of telemetry, while the other five focus on the methods used in flight tests.Unlike other professional textbooks, this book describes the practical telemetry theory and combines theory and engineering practice to offer a comprehensive and systematic overview of telemetry in flight test for readers.
This book is an in-depth guide to effective scientific research. Ranging from the philosophical to the practical, it explains at the outset what science can - and can't - achieve, and discusses its relationship to mathematics and laws. The author then pays extensive attention to the scientific method, including experimental design, verification, uncertainty and statistics. A major aim of the book is to help young scientists reflect upon the deeper aims of their work and make the best use of their talents in contributing to progress. To this end, it also includes sections on planning research, on presenting one's findings in writing, as well as on ethics and the responsibilities of scientists.
This book is written by two world-recognized experts in radio frequency (RF) systems for particle accelerators and is based on many years of experience in dealing with the multipactor phenomenon. The authors introduce and review multipactor in RF cavities for scientists and engineers working in the field of accelerator physics and technology. The multipactor phenomenon of unintended electron avalanches occurs in the RF cavities commonly and quite often is a performance-limiting factor. The book starts with an Introductory Overview which contains historical observations and brief description of most common aspects of the phenomenon. Part I deals with the multipactor in a flat gap. It starts with description of the dynamics of electrons, derivation of the stability condition and analyzing influence of several factors on the multipactor. Then, the initial considerations are extended to derive a generalized phase stability and finally a particular case, called ping-pong multipacting, is considered. The part one is concluded with a brief review of computer codes used in multipactor simulations. Part II is dedicated to the multipactor in crossed RF fields, the typical situation in accelerating cavities. Two cases of MP are considered: a two-point multipactor near the cavity equator in elliptical cavities and a one-point multipactor. Part III describes optimization of the cavity shapes geared toward designing multipactor-free structures. The book will serve as an importance reference on multipactor for those involved in developing and operating radio frequency cavities for particle accelerators.
This comprehensive volume summarizes and structures the multitude of results obtained at the LHC in its first running period and draws the grand picture of today's physics at a hadron collider. Topics covered are Standard Model measurements, Higgs and top-quark physics, flavour physics, heavy-ion physics, and searches for supersymmetry and other extensions of the Standard Model. Emphasis is placed on overview and presentation of the lessons learned. Chapters on detectors and the LHC machine and a thorough outlook into the future complement the book. The individual chapters are written by teams of expert authors working at the forefront of LHC research.
This proceeding includes original and peer-reviewed research papers from the 3rd International Conference on Control, Instrumentation and Mechatronics Engineering (CIM2022). The conference is a virtual conference held on 2-3 March 2022. The topics covered latest work and finding in the area of Control Engineering, Mechatronics, Robotics and Automation, Artificial Intelligence, Manufacturing, Sensor, Measurement and Instrumentation. Moreover, the latest applications of instrumentations, control and mechatronics are provided. Therefore, this proceeding is a valuable material for researchers, academicians, university students and engineers.
Metrology is the study of measurement science. Although classical economists have emphasized the importance of measurement per se, the majority of economics-based writings on the topic have taken the form of government reports related to the activities of specific national metrology laboratories. This book is the first systematic study of measurement activity at a national metrology laboratory, and the laboratory studied is the U.S. National Institute of Standards and Technology (NIST) within the U.S. Department of Commerce. The primary objective of the book is to emphasize for academic and policy audiences the economic importance of measurement not only as an area of study but also as a tool for sustaining technological advancement as an element of economic growth. Toward this goal, the book offers an overview of the economic benefits and consequences of measurement standards; an argument for public sector support of measurement standards; a historical perspective of the measurement activities at NIST; an empirical analysis of one particular measurement activity at NIST, namely calibration testing; and a roadmap for future research on the economics of metrology.
In the history of humankind, the sea has always played a key role as a privileged medium for communication, commerce and contact among population centers. It constitutes an essential ecosystem, and an invaluable reservoir and source of food for all living beings. Therefore, its heath is a critical challenge for the survival of all humanity, particularly as one the most important environmental components targeted by global warming. Measuring and monitoring techniques are key tools for managing the marine environment and for supporting the Blue Economy. With this perspective, a series of annual international events, entitled Metrology for the Sea (MetroSea for short) was begun in 2017. Their increasing success inspired this book, which provides an anthology of tutorials dealing with a representative selection of topics of concern to a broad readership. The book covers two broad application areas, marine hydrography and meteorology, and then deals with instrumentation for measurement at sea. Typical metrological issues such as calibration and traceability, are considered, for both physical and chemical quantities. Key techniques, such as underwater acoustic investigation, remote sensing, measurement of waves and monitoring networks, are treated alongside marine geology and the monitoring of animal species. Economic and legal aspects of metrology for navigation are also discussed. Such an unparalleled wide vision of measurement for the sea will be of interest to a broad audience of scientists, engineers, economists, and their students.
"Natural Gas Hydrates: Experimental Techniques and Their Applications" attempts to broadly integrate the most recent knowledge in the fields of hydrate experimental techniques in the laboratory. The book examines various experimental techniques in order to provide useful parameters for gas hydrate exploration and exploitation. It provides experimental techniques for gas hydrates, including the detection techniques, the thermo-physical properties, permeability and mechanical properties, geochemical abnormalities, stability and dissociation kinetics, exploitation conditions, as well as modern measurement technologies etc. This book will be of interest to experimental scientists who engage in gas hydrate experiments in the laboratory, and is also intended as a reference work for students concerned with gas hydrate research. Yuguang Ye is a distinguished professor of Experimental Geology at Qingdao Institute of Marine Geology, China Geological Survey, China. Professor Changling Liu works at the Qingdao Institute of Marine Geology, China Geological Survey, China.
Micro-X-ray fluorescence offers the possibility for a position- sensitive and non-destructive analysis that can be used for the analysis of non-homogeneous materials and layer systems. This analytical technique has shown a dynamic development in the last 15 years and is used for the analysis of small particles, inclusions, of elemental distributions for a wide range of different applications both in research and quality control. The first experiments were performed on synchrotrons but there is a requirement for laboratory instruments which offers a fast and immediate access for analytical results. The book discuss the main components of a -XRF instrument and the different measurement modes, it gives an overview about the various instruments types, considers the special requirements for quantification of non-homogeneous materials and presents a wide range of application for single point and multi-point analysis as well as for distribution analysis in one, two and three dimensions.
The book covers in particular state-of-the-art scientific research about product quality control and related health and environmental safety topics, including human, animal and plant safety assurance issues. These conference proceedings provide contemporary information on the general theoretical, metrological and practical issues of the production and application of reference materials. Reference materials play an integral role in physical, chemical and related type of measurements, ensuring their uniformity, comparability and the validity of quantitative analysis as well as, as a result, the objectivity of decisions concerning the elimination of technical barriers in commercial and economic, scientific and technical and other spheres of cooperation. The book is intended for researchers and practitioners in the field of chemistry, metrologists, technical physics, as well as for specialists in analytical laboratories, or working for companies and organizations involved in the production, distribution and use of reference materials.
The work described in this PhD thesis is a study of a real implementation of a track-finder system which could provide reconstructed high transverse momentum tracks to the first-level trigger of the High Luminosity LHC upgrade of the CMS experiment. This is vital for the future success of CMS, since otherwise it will be impossible to achieve the trigger selectivity needed to contain the very high event rates. The unique and extremely challenging requirement of the system is to utilise the enormous volume of tracker data within a few microseconds to arrive at a trigger decision. The track-finder demonstrator described proved unequivocally, using existing hardware, that a real-time track-finder could be built using present-generation FPGA-based technology which would meet the latency and performance requirements of the future tracker. This means that more advanced hardware customised for the new CMS tracker should be even more capable, and will deliver very significant gains for the future physics returns from the LHC.
This book discusses recent advances in wearable technologies and personal monitoring devices, covering topics such as skin contact-based wearables (electrodes), non-contact wearables, the Internet of things (IoT), and signal processing for wearable devices. Although it chiefly focuses on wearable devices and provides comprehensive descriptions of all the core principles of personal monitoring devices, the book also features a section on devices that are embedded in smart appliances/furniture, e.g. chairs, which, despite their limitations, have taken the concept of unobtrusiveness to the next level. Wearable and personal devices are the key to precision medicine, and the medical community is finally exploring the opportunities offered by long-term monitoring of physiological parameters that are collected during day-to-day life without the bias imposed by the clinical environment. Such data offers a prime view of individuals' physical condition, as well as the efficacy of therapy and occurrence of events. Offering an in-depth analysis of the latest advances in smart and pervasive wearable devices, particularly those that are unobtrusive and invisible, and addressing topics not covered elsewhere, the book will appeal to medical practitioners and engineers alike.
This book provides an overview of the application of statistical methods to problems in metrology, with emphasis on modelling measurement processes and quantifying their associated uncertainties. It covers everything from fundamentals to more advanced special topics, each illustrated with case studies from the authors' work in the Nuclear Security Enterprise (NSE). The material provides readers with a solid understanding of how to apply the techniques to metrology studies in a wide variety of contexts. The volume offers particular attention to uncertainty in decision making, design of experiments (DOEx) and curve fitting, along with special topics such as statistical process control (SPC), assessment of binary measurement systems, and new results on sample size selection in metrology studies. The methodologies presented are supported with R script when appropriate, and the code has been made available for readers to use in their own applications. Designed to promote collaboration between statistics and metrology, this book will be of use to practitioners of metrology as well as students and researchers in statistics and engineering disciplines.
This book shows the availability and potential of the coupled acoustic-gravitational (CAG) field for trace-level biosensing. The proposed detection scheme also allows the evaluation of the kinetics and thermodynamics of the reaction occurring on a single microparticle (MP). This method has wide applicability in important fields, involving not only chemistry but also life, environmental, and medical sciences. The author proposes novel trace-level biosensing based on measurements of the levitation coordinate shift of an MP in the CAG field. The levitation coordinate of the MP in the CAG field is determined by its density and compressibility. The levitation coordinate shift is induced by the binding of gold nanoparticles (AuNPs) to the MP through interparticle reactions. Therefore, the quantity of molecules involved in the reaction can be determined from the levitation coordinate shift. The author demonstrates the zmol level detection for biotin, DNA/RNA, and organic molecules. In addition, the kinetics and thermodynamics are evaluated for various reactions occurring between the MP and AuNP, such as the avidin-biotin reaction, direct hybridization, sandwich hybridization, and aptamer-target complexation. This book provides a new concept based on the CAG field, in which the extent of a reaction is converted into the levitation coordinate shift, that is, "length." The proposed method has many advantages over other methods, e.g., high biocompatibility, high applicability, and short analysis time. In addition, because the apparatus used in this study is inexpensive and easy to miniaturize, this method is useful in important practical fields, such as forensic and environmental science and diagnosis. Thus, this book inspires many researchers to apply the present method to their own fields of interest.
This volume contains the proceedings of the 13th International Conference on Damage Assessment of Structures DAMAS 2019, 9-10 July 2019, Porto, Portugal. It presents the expertise of scientists and engineers in academia and industry in the field of damage assessment, structural health monitoring and non-destructive evaluation. The proceedings covers all research topics relevant to damage assessment of engineering structures and systems including numerical simulations, signal processing of sensor measurements and theoretical techniques as well as experimental case studies.
The book highlights recent developments in the field of biomedical systems covering a wide range of technological aspects, methods, systems and instrumentation techniques for diagnosis, monitoring, treatment, and assistance. Biomedical systems are becoming increasingly important in medicine and in special areas of application such as supporting people with disabilities and under pandemic conditions. They provide a solid basis for supporting people and improving their health care. As such, the book offers a key reference guide about novel medical systems for students, engineers, designers, and technicians.
< p=""> This book focuses both on the basics and more complex topics in mechanical measurements such as measurement errors & statistical analysis of data, regression analysis, heat flux, measurement of pressure, and radiation properties of surfaces. End of chapter problems, solved illustrations, and exercise problems are presented throughout the book to augment learning. It is a useful reference for students in both undergraduate and postgraduate programs. ^
Authored by two highly respected experts in this specialist area, The Fundamentals of Radiation Thermometers is an essential resource for anyone intending to measure the temperature of an object using the radiated energy from that object. This readable, user-friendly book gives important background knowledge for anyone working in the field of non-contact thermometry. The book begins with an accessible account of how temperature scales are set up and defined, and explores the historic development of temperature scales and Planck's radiation law. Through explaining the reliability of both emissivity values and extrapolation to different wavelengths and temperatures, the book provides a foundation for understanding when a valid measurement with realistic uncertainties has been made, or if an inappropriate emissivity value has been used with consequent unknown errors. The book also presents the hardware of radiation thermometers, allowing the reader to specify an appropriate design for a particular measurement problem. It explores multi-wavelength radiation thermometry and its associated pitfalls, and a final chapter suggests strategies to minimise the uncertainties from unreliable emissivity data.
This book describes the active vibration control techniques which have been developed to suppress excessive vibrations of structures. It covers the fundamental principles of active control methods and their applications and shows how active vibration control techniques have replaced traditional passive vibration control. The book includes coverage of dynamic modeling, control design, sensing methodology, actuator mechanism and electronic circuit design, and the implementation of control algorithms via digital controllers. An in-depth approach has been taken to describe the modeling of structures for control design, the development of control algorithms suitable for structural control, and the implementation of control algorithms by means of Simulink block diagrams or C language. Details of currently available actuators and sensors and electronic circuits for signal conditioning and filtering have been provided based on the most recent advances in the field. The book is used as a textbook for students and a reference for researchers who are interested in studying cutting-edge technology. It will be a valuable resource for academic and industrial researchers and professionals involved in the design and manufacture of active vibration controllers for structures in a wide variety of fields and industries including the automotive, rail, aerospace, and civil engineering sectors. |
You may like...
Novel Optical Endoscopes for Early…
Dale Jonathan Waterhouse
Hardcover
R2,653
Discovery Miles 26 530
Object-Orientation, Abstraction, and…
Mark C. Lewis, Lisa Lacher
Hardcover
R5,544
Discovery Miles 55 440
|