![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific standards
This volume presents measurement uncertainty and uncertainty budgets in a form accessible to practicing engineers and engineering students from across a wide range of disciplines. The book gives a detailed explanation of the methods presented by NIST in the "GUM" - Guide to Uncertainty of Measurement. Emphasis is placed on explaining the background and meaning of the topics, while keeping the level of mathematics at the minimum level necessary. Dr. Colin Ratcliffe, USNA, and Bridget Ratcliffe, Johns Hopkins, develop uncertainty budgets and explain their use. In some examples, the budget may show a process is already adequate and where costs can be saved. In other examples, the budget may show the process is inadequate and needs improvement. The book demonstrates how uncertainty budgets help identify the most cost effective place to make changes. In addition, an extensive fully-worked case study leads readers through all issues related to an uncertainty analysis, including a variety of different types of uncertainty budgets. The book is ideal for professional engineers and students concerned with a broad range of measurement assurance challenges in applied sciences. This book also: Facilitates practicing engineers' understanding of uncertainty budgets, essential to calculating cost-effective savings to a wide variety of processes contingent on measurement Presents uncertainty budgets in an accessible style suitable for all undergraduate STEM courses that include a laboratory component Provides a highly adaptable supplement to graduate textbooks for courses where students' work includes reporting on experimental results Includes an expanded case study developing uncertainty from transducers though measurands and propagated to the final measurement that can be used as a template for the analysis of many processes Stands as a useful pocket reference for all engineers and experimental scientists
This book deals with a number of fundamental issues related to the practical implementation of ultrasonic NDT techniques in an industrial environment. The book discusses advanced academic research results and their application to industrial procedures. The text covers the choice and generation of the signals energizing the system to probe position optimization, from quality assessment evaluation to tomographic inversion. With a focus to deepen a number of fundamental aspects involved in the specific objective of designing and developing an ultrasonic imaging system for nondestructive testing, aimed to automatically classify the entire production of an industrial production line, targeted to the field of precision mechanics. The contents of this book is the result of the common effort of six University Research Groups that focused their research activities for two years on this specific objective, working in direct conjunction with primary industrial firms, in a research project funded by the Italian government as a Strategic Research Project.
In this thesis, the author has developed a high-resolution spin-resolved photoemission spectrometer that achieves the world-best energy resolution of 8 meV. The author has designed a new, highly efficient mini Mott detector that has a large electron acceptance angle and an atomically flat gold target to enhance the efficiency of detecting scattered electrons. The author measured the electron and spin structure of Bi thin film grown on a Si(111) surface to study the Rashba effect. Unlike the conventional Rashba splitting, an asymmetric in-plane spin polarization and a tremendous out-of-plane spin component were observed. Moreover, the author found that the spin polarization of Rashba surface states is reduced by decreasing the film thickness, which indicates the considerable interaction of Rashba spin-split states between the surface and Bi/Si interface.
Describes the instruments and initial results of the Fast Imaging Solar Spectrograph (FISS) at the Big Bear Solar Observatory. This collection of papers describes the instrument and initial results obtained from the Fast Imaging Solar Spectrograph (FISS), one of the post-focus instruments of the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. The FISS primarily aims at investigating structures and dynamics of chromospheric features. This instrument is a dual-band Echelle spectrograph optimized for the simultaneous recording of the H I 656.3 nm band and the Ca II 854.2 nm band. The imaging is done with the fast raster scan realized by the linear motion of a two-mirror scanner, and its quality is determined by the performance of the adaptive optics of the telescope. These papers illustrate the capability of the early FISS observations in the study of chromospheric features. Since the imaging quality has been improved a lot with the advance of the adaptive optics, one can obtain much better data with the current FISS observations. This volume is aimed at graduate students and researchers working in the field of solar physics and space sciences. Originally published in Solar Physics, Vol. 288, Issue 1, 2013, and Vol. 289, Issue 11, 2014.
This thesis presents neutron scattering data that contribute to the understanding of four distinct areas of condensed matter physics, including iso-compositional liquid-liquid phase transitions and the glass formation in rare earth doped BaTi2O5. In situ aerodynamic levitation with laser heating was combined with neutron scattering in order to study both liquid-liquid phase transitions in (Y2O3)x(Al2O3)1-x and the atomic and magnetic ordering in liquid Invar. Among several significant results, obtained in this case from small angle neutron scattering, was the absence of a phase transition across a range of temperatures and compositions in the yttria aluminates. As these are a principal system in which liquid-liquid phase transitions have been hypothesized, this is an important contribution in a contentious area.
A static compensator (STATCOM), also known as static synchronous compensator, is a member of the flexible alternating current transmission system (FACTS) devices. It is a power-electronics based regulating device which is composed of a voltage source converter (VSC) and is shunt-connected to alternating current electricity transmission and distribution networks. The voltage source is created from a DC capacitor and the STATCOM can exchange reactive power with the network. It can also supply some active power to the network, if a DC source of power is connected across the capacitor. A STATCOM is usually installed in the electric networks with poor power factor or poor voltage regulation to improve these problems. In addition, it is used to improve the voltage stability of a network. This book covers STATCOMs from different aspects. Different converter topologies, output filters and modulation techniques utilized within STATCOMs are reviewed. Mathematical modeling of STATCOM is presented in detail and different STATCOM control strategies and algorithms are discussed. Modified load flow calculations for a power system in the presence of STATCOMs are presented. Several applications of STATCOMs in transmission and distribution networks are discussed in different examples and optimization techniques for defining the optimal location and ratings of the STATCOMs in power systems are reviewed. Finally, the performance of the network protection scheme in the presence of STATCOMs is described. This book will be an excellent resource for postgraduate students and researchers interested in grasping the knowledge on STATCOMs.
Matterâ€wave interferometry is a promising and successful way to explore truly macroscopic quantum phenomena and probe the validity of quantum theory at the borderline to the classic world. Indeed, we may soon witness quantum superpositions with nano to micrometer-sized objects. Yet, venturing deeper into the macroscopic domain is not only an experimental but also a theoretical endeavour: new interferometers must be conceived, sources of noise and decoherence identified, size effects understood and possible modifications of the theory taken into account. This thesis provides the theoretical background to recent advances in molecule and nanoparticle interferometry. In addition, it contains a physical and objective method to assess the degree of macroscopicity of such experiments, ranking them among other macroscopic quantum superposition phenomena.
It is the intent of this book to combine high-voltage (HV) engineering with HV testing technique and HV measuring technique. Based on long-term experience gained by the authors as lecturer and researcher as well as member in international organizations, such as IEC and CIGRE, the book will reflect the state of the art as well as the future trends in testing and diagnostics of HV equipment to ensure a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.
The search for gravitational radiation with optical interferometers is gaining momentum worldwide. Beside the VIRGO and GEO gravitational wave observatories in Europe and the two LIGOs in the United States, which have operated successfully during the past decade, further observatories are being completed (KAGRA in Japan) or planned (ILIGO in India). The sensitivity of the current observatories, although spectacular, has not allowed direct discovery of gravitational waves. The advanced detectors (Advanced LIGO and Advanced Virgo) at present in the development phase will improve sensitivity by a factor of 10, probing the universe up to 200 Mpc for signal from inspiraling binary compact stars. This book covers all experimental aspects of the search for gravitational radiation with optical interferometers. Every facet of the technological development underlying the evolution of advanced interferometers is thoroughly described, from configuration to optics and coatings and from thermal compensation to suspensions and controls. All key ingredients of an advanced detector are covered, including the solutions implemented in first-generation detectors, their limitations, and how to overcome them. Each issue is addressed with special reference to the solution adopted for Advanced VIRGO but constant attention is also paid to other strategies, in particular those chosen for Advanced LIGO.
This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth chapter deals with evaporation effects in the context of flamelet models. In chapter five, LES simulation results are discussed for variable fuel and mass loading. The final chapter discusses PDF modelling of turbulent spray combustion. In short, the contributions in this book are highly valuable for the research community in this field, providing in-depth insight into some of the many aspects of dilute turbulent spray combustion.
This book gives the background to differential-pressure flow measurement and goes through the requirements explaining the reason for them. For those who want to use an orifice plate or a Venturi tube the standard ISO 5167 and its associated Technical Reports give the instructions required. However, they rarely tell the users why they should follow certain instructions. This book helps users of the ISO standards for orifice plates and Venturi tubes to understand the reasons why the standards are as they are, to apply them effectively, and to understand the consequences of deviations from the standards.
This comprehensive volume summarizes and structures the multitude of results obtained at the LHC in its first running period and draws the grand picture of today’s physics at a hadron collider. Topics covered are Standard Model measurements, Higgs and top-quark physics, flavour physics, heavy-ion physics, and searches for supersymmetry and other extensions of the Standard Model. Emphasis is placed on overview and presentation of the lessons learned. Chapters on detectors and the LHC machine and a thorough outlook into the future complement the book. The individual chapters are written by teams of expert authors working at the forefront of LHC research.
This book describes new and efficient calorimetric measurement methods, which can be used to accurately follow the chemical kinetics of liquid phase reaction systems. It describes apparatus and techniques for the precise measuring of the rate of heat liberation in discontinuous and continuous isothermal as well as non-isothermal reactions. The presented methodology can be used to follow the development of chemical reactions online, even in industrial scales. Written by an experienced scientist and practitioner, who can look back on long-standing expert knowledge in chemical engineering, the book contains many practical hints and instructions. The reader will find a sound compact introduction to fundamentals, and comprehensive technical background information and instructions for performing own kinetic experiments. This book is the fusion of scientific background information and long hands-on experience in the practice.
This edited book contains invited papers from renowned experts working in the field of Wearable Electronics Sensors. It includes 14 chapters describing recent advancements in the area of Wearable Sensors, Wireless Sensors and Sensor Networks, Protocols, Topologies, Instrumentation architectures, Measurement techniques, Energy harvesting and scavenging, Signal processing, Design and Prototyping. The book will be useful for engineers, scientist and post-graduate students as a reference book for their research on wearable sensors, devices and technologies which is experiencing a period of rapid growth driven by new applications such as heart rate monitors, smart watches, tracking devices and smart glasses.
Neutrinos continue to be the most mysterious and, arguably, the most fascinating particles of the Standard Model as their intrinsic properties such as absolute mass scale and CP properties are unknown. The open question of the absolute neutrino mass scale will be addressed with unprecedented accuracy by the Karlsruhe Tritium Neutrino (KATRIN) experiment, currently under construction. This thesis focusses on the spectrometer part of KATRIN and background processes therein. Various background sources such as small Penning traps, as well as nuclear decays from single radon atoms are fully characterized here for the first time. Most importantly, however, it was possible to reduce the background in the spectrometer by more than five orders of magnitude by eliminating Penning traps and by developing a completely new background reduction method by stochastically heating trapped electrons using electron cyclotron resonance (ECR). The work beautifully demonstrates that the obstacles and challenges in measuring the absolute mass scale of neutrinos can be met successfully if novel experimental tools (ECR) and novel computing methods (KASSIOPEIA) are combined to allow almost background-free tritium ss-spectroscopy.
This thesis describes a high-quality, high-precision method for the data analysis of an interesting elementary particle reaction. The data was collected at the Japanese B-meson factory KEKB with the Belle detector, one of the most successful large-scale experiments worldwide. CP violation is a subtle quantum effect that makes the world look different when simultaneously left and right and matter and antimatter are exchanged. This being a prerequisite for our own world to have developed from the big bang, there are only a few experimental indications of such effects, and their detection requires very intricate techniques. The discovery of CP violation in B meson decays garnered Kobayashi and Maskawa, who had predicted these findings as early as 1973, the 2008 Nobel prize in physics. This thesis describes in great detail what are by far the best measurements of branching ratios and CP violation parameters in two special reactions with two charm mesons in the final state. It presents an in-depth but accessible overview of the theory, phenomenology, experimental setup, data collection, Monte Carlo simulations, (blind) statistical data analysis, and systematic uncertainty studies.
The work presented in this thesis spans a wide range of experimental particle physics subjects, starting from level-1 trigger electronics to the final results of the search for Higgs boson decay and to tau lepton pairs. The thesis describes an innovative reconstruction algorithm for tau decays and details how it was instrumental in providing a measurement of Z decay to tau lepton pairs. The reliability of the analysis is fully established by this measurement before the Higgs boson decay to tau lepton pairs is considered. The work described here continues to serve as a model for analysing CMS Higgs to tau leptons measurements.
In this thesis, the author explains the background of problems in quantum estimation, the necessary conditions required for estimation precision benchmarks that are applicable and meaningful for evaluating data in quantum information experiments, and provides examples of such benchmarks. The author develops mathematical methods in quantum estimation theory and analyzes the benchmarks in tests of Bell-type correlation and quantum tomography with those methods. Above all, a set of explicit formulae for evaluating the estimation precision in quantum tomography with finite data sets is derived, in contrast to the standard quantum estimation theory, which can deal only with infinite samples. This is the first result directly applicable to the evaluation of estimation errors in quantum tomography experiments, allowing experimentalists to guarantee estimation precision and verify quantitatively that their preparation is reliable.
This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data analysis with different techniques. The theory is applicable to studies of bulk materials of all kinds, including single crystals and polycrystals as well as to surface studies under grazing incidence. The book appeals to researchers and graduate students alike.
This thesis is devoted to ANTARES, the first underwater neutrino telescope in the Mediterranean sea. As the main scientific analysis, a search for high-energy neutrino emission from the region of the Fermi bubbles has been performed using data from the ANTARES detector. A method for the background estimation using off-zones has been developed specially for this measurement. A new likelihood for the limits calculation which treats both observations in the on-zone and in the off-zone in the similar way and also includes different systematic uncertainties has been constructed. The analysis of 2008–2011 ANTARES data yielded a 1.2 σ excess of events in the Fermi bubble regions, compatible with the no-signal hypothesis. For the optimistic case of no energy cutoff in the flux, the upper limit is within a factor of three of the prediction of the purely hadronic model based on the measured gamma-ray flux. The sensitivity improves as more data are accumulated (more than 65% gain in the sensitivity is expected once 2012–2016 data are added to the analysis).
In this book the applicability and the utility of two statistical approaches for understanding dark energy and dark matter with gravitational lensing measurement are introduced. For cosmological constraints on the nature of dark energy, morphological statistics called Minkowski functionals (MFs) to extract the non-Gaussian information of gravitational lensing are studied. Measuring lensing MFs from the Canada-France-Hawaii Telescope Lensing survey (CFHTLenS), the author clearly shows that MFs can be powerful statistics beyond the conventional approach with the two-point correlation function. Combined with the two-point correlation function, MFs can constrain the equation of state of dark energy with a precision level of approximately 3-4 % in upcoming surveys with sky coverage of 20,000 square degrees. On the topic of dark matter, the author studied the cross-correlation of gravitational lensing and the extragalactic gamma-ray background (EGB). Dark matter annihilation is among the potential contributors to the EGB. The cross-correlation is a powerful probe of signatures of dark matter annihilation, because both cosmic shear and gamma-ray emission originate directly from the same dark matter distribution in the universe. The first measurement of the cross-correlation using a real data set obtained from CFHTLenS and the Fermi Large Area Telescope was performed. Comparing the result with theoretical predictions, an independent constraint was placed on dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter.
The main goal of the book is to provide a systematic and didactic approach to the physics and technology of free-electron lasers. Numerous figures are used for illustrating the underlying ideas and concepts and links to other fields of physics are provided. After an introduction to undulator radiation and the low-gain FEL, the one-dimensional theory of the high-gain FEL is developed in a systematic way. Particular emphasis is put on explaining and justifying the various assumptions and approximations that are needed to obtain the differential and integral equations governing the FEL dynamics. Analytical and numerical solutions are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. One of the most important features of a high-gain FEL, the formation of microbunches, is studied at length. The increase of gain length due to beam energy spread, space charge forces, and three-dimensional effects such as betatron oscillations and optical diffraction is analyzed. The mechanism of Self-Amplified Spontaneous Emission is described theoretically and illustrated with numerous experimental results. Various methods of FEL seeding by coherent external radiation are introduced, together with experimental results. The world’s first soft X-ray FEL, the user facility FLASH at DESY, is described in some detail to give an impression of the complexity of such an accelerator-based light source. The last chapter is devoted to the new hard X-ray FELs which generate extremely intense radiation in the Angstrøm regime. The appendices contain supplementary material and more involved calculations.
The research presented here includes important contributions on the commissioning of the ATLAS experiment and the discovery of the Higgs boson. The thesis describes essential work on the alignment of the inner tracker during the commissioning of the experiment and development of the electron identification algorithm. The subsequent analysis focuses on the search for the Higgs boson in the WW channel, including the development of a method to model the critical W+jet background. In addition, the thesis provides excellent introductions, suitable for non-specialists, to Higgs physics, to the LHC, and to the ATLAS experiment.
This book covers the recent research advancements in the area of charging strategies that can be employed to accommodate the anticipated high deployment of Plug-in Electric Vehicles (PEVs) in smart grids. Recent literature has focused on various potential issues of uncoordinated charging of PEVs and methods of overcoming such challenges. After an introduction to charging coordination paradigms of PEVs, this book will present various ways the coordinated control can be accomplished. These innovative approaches include hierarchical coordinated control, model predictive control, optimal control strategies to minimize load variance, smart PEV load management based on load forecasting, integrating renewable energy sources such as photovoltaic arrays to supplement grid power, using wireless communication networks to coordinate the charging load of a smart grid and using market price of electricity and customers payment to coordinate the charging load. Hence, this book proposes many new strategies proposed recently by the researchers around the world to address the issues related to coordination of charging load of PEVs in a future smart grid.
Micro-X-ray fluorescence offers the possibility for a position- sensitive and non-destructive analysis that can be used for the analysis of non-homogeneous materials and layer systems. This analytical technique has shown a dynamic development in the last 15 years and is used for the analysis of small particles, inclusions, of elemental distributions for a wide range of different applications both in research and quality control. The first experiments were performed on synchrotrons but there is a requirement for laboratory instruments which offers a fast and immediate access for analytical results. The book discuss the main components of a µ-XRF instrument and the different measurement modes, it gives an overview about the various instruments types, considers the special requirements for quantification of non-homogeneous materials and presents a wide range of application for single point and multi-point analysis as well as for distribution analysis in one, two and three dimensions. |
![]() ![]() You may like...
Research Handbook on European Union…
Dora Kostakopoulou, Daniel Thym
Hardcover
R6,397
Discovery Miles 63 970
|