![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific standards
A broad class of accelerators rests on the induction principle whereby the accelerating electrical fields are generated by time-varying magnetic fluxes. Particularly suitable for the transport of bright and high-intensity beams of electrons, protons or heavy ions in any geometry (linear or circular) the research and development of induction accelerators is a thriving subfield of accelerator physics. This text is the first comprehensive account of both the fundamentals and the state of the art about the modern conceptual design and implementation of such devices. Accordingly, the first part of the book is devoted to the essential features of and key technologies used for induction accelerators at a level suitable for postgraduate students and newcomers to the field. Subsequent chapters deal with more specialized and advanced topics.
Micro/nanotribology as a field is concerned with experimental and theoretical investigations of processes ranging from atomic and molecular scales to the microscale, occurring during adhesion, friction, wear, and thin-film lubrication at sliding surfaces. As a field it is truly interdisciplinary, but this confronts the would-be entrant with the difficulty of becoming familiar with the basic theories and applications: the area is not covered in any undergraduate or graduate scientific curriculum. The present work commences with a history of tribology and micro/nanotribology, followed by discussions of instrumentation, basic theories of friction, wear and lubrication on nano- to microscales, and their industrial applications. A variety of research instruments are covered, including a variety of scanning probe microscopes and surface force apparatus. Experimental research and modelling are expertly dealt with, the emphasis throughout being applied aspects.
While preparing the manuscript ofthis book, the author was informed that Profs. H. Dehmelt, Univ. ofWashington, W. Paul, Univ. Bonn and N. F. Ramsey, HarvardUniv. havewontheNobel PrizeinPhysics(1989;fortheirNobellectures, refertoRev.ModernPhysics, Vol.62(l990)pp.525-552).Theirmaincontributions are the pioneering works on the Ramsey resonance method, ion trap, and so on, which are the main topics to be discussed in this book. TherearetwoothergroupspreviouslyawardedwiththeNobelprizeinPhysics for their contributions to laser physics and quantum optics; C. H. Townes, N. G. Basov, and A. M. Prokhorov were awarded a Nobel prize for their works on the inventionofmasers and lasers as well as the basic studiesofquantum electronics; N. Bloembergen and A. L. Schawlow, in 1981, for their works on laser spectros copy. It is an exceptional case that a branch ofphysics could win the Nobel prize threetimes.Thisfactreflectsandimpliesthatlaserphysicsandphysicsusinglasers are important fields ofbasic study, which relate closely to the quantum optics and atomicphysics. Furthermore, asthecaseofsemiconductorlasers, ithasbecomean importantfield for industrial applications, e.g., opticalcommunicationand optical diskmemories. As shownbythese examples, itcan beconsideredthatthe studyof laser isauniversaloneinscienceandtechnology, coveringawide rangefrombasic physics to industrial applications
The importance of proper geometric dimensioning and tolerancing as a means of expressing the designer's functional intent and controlling the inevitable geometric and dimensional variations of mechanical parts and assemblies, is becoming well recognized. The research efforts and innovations in the field of tolerancing design, the development of supporting tools, techniques and algorithms, and the significant advances in computing software and hardware all have contributed to its recognition as a viable area of serious scholarly contributions. The field of tolerancing design is successfully making the transition to maturity where deeper insights and sound theories are being developed to offer explanations, and reliable implementations are introduced to provide solutions. Machine designers realized very early that manufacturing processes do not produce the nominal dimensions of designed parts. The notion of associating a lower and an upper limit, referred to as tolerances, with each dimen sion was introduced. Tolerances were specified to ensure the proper function of mating features. Fits of mating features included clearances, location fits, and interference fits, with various sub-grades in each category assigned a tolerance value depending on the nominal size of the mating features. During the inspection process, a part is rejected if a dimension fell outside the specified range. As the accuracy requirements in assemblies became tighter, designers had to consider other critical dimensions and allocate tolerances to them in order to ensure the assembly's functionality.
Scanning near-field optical microscopy (SNOM, also known as NSOM) is a new local probe technique with a resolving power of 10--50 nm. Not being limited by diffraction, near-field optics (NFO) opens new perspectives for optical characterization and the understanding of optical phenomena, in particular in biology, microelectronics and materials science. SNOM, after first demonstrations in '83/'84, has undergone a rapid development in the past two to four years. The increased interest has been largely stimulated by the wealth of optical properties that can be investigated and the growing importance of characterization on the nanometer scale in general. Examples include the use of fluorescence, birefrigence and plasmon effects for applications in particular in biology, microelectronics and materials science, to name just a few. This volume emerged from the first international meeting devoted exclusively to NFO, and comprises a complete survey of the 1992 activities in the field, in particular the variety of instrumental techniques that are currently being explored, the demonstration of the imaging capabilities as well as theoretical interpretations - a highly nontrivial task. The comprehensive collection of papers devoted to these and related subjects make the book a valuable tool for anybody interested in near-field optics.
Pneumatic, hydraulic and allied instrumentation schemes have given way to electronic schemes in recent years thanks to the rapid strides in electronics and allied areas. Principles, design and applications of such state-of-the-art instrumentation schemes form the subject matter of this book. Through representative examples, the basic building blocks of instrumentation schemes are identified and each of these building blocks discussed in terms of its design and interface characteristics. The common generic schemes synthesized with such building blocks are dealt with subsequently. This forms the scope of Part I. The focus in Part II is on application. Displacement and allied instrumentation, force and allied instrumentation and process instrumentation in terms of temperature, flow, pressure level and other common process variables are dealt with separately and exhaustively. Despite the diversity in the sensor principles and characteristics and the variety in the applications and their environments, it is possible judiciously to carve out broad areas of application for each type of sensor and the instrumentation built around it. The last chapter categorises instrumentation schemes according to their different levels of complexity. Specific practical examples - especially at involved complexity levels - are discussed in detail.
Since the first international conference on urban air quality, held at the University ofHertfordshire in 1996, significant advances have taken place in the field of urban air pollution. In addition to the scientific advances in the measurement, modelling and management of urban air quality, significant progress has been achieved in relation to the establishment of major frameworks to ensure a more effective mechanism for international collaboration. Two such frameworks are SATURN (Studying Atmospheric Pollution in Urban Areas) and TRAPOS (Optimisation of Modelling Methods for Traffic Pollution in Streets). In response to such advances, the second international conference was held at the Technical University of Madrid in March 1999 with active participation of SATURN and TRAPOS investigators. The organisation of the conference was headed by the Institute of Physics in collaboration with the Technical University of Madrid and the University of Hertfordshire. The support of IUAPPA and AWMA ensured a truly worldwide promotion and participation. The meeting attracted 140 scientists from 26 different countries establishing it as a major forum for exchanging and discussing the latest research fmdings in this field.
Proceedings of the International Conference on Advanced Diagnostics for Magnetic and Inertial Fusion, held September 3-7, 2001 at Villa Monastero, Varenna, Italy. This volume focuses on future diagnostic requirements for fusion energy research emphasizing advanced diagnostics, new techniques and areas where further progress is required.
Since 1995, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. Based on nanomechanical methods, the NC-AFM detects the weak attractive force between the tip of a cantilever and a sample surface. This method has the following characteristics: it has true atomic resolution; it can measure atomic force interactions, i.e. it can be used in so-called atomic force spectroscopy (AFS); it can also be used to study insulators; and it can measure mechanical responses such as elastic deformation. This is the first book that deals with all of the emerging NC-AFM issues.
An assessment of the recent achievements and relative strengths of two developing techniques for characterising surfaces at the nanometer scale: (i) local probe methods, including scanning tunnelling microscopy and its derivatives; and (ii) nanoscale photoemission and absorption spectroscopy for chemical analysis. The keynote lectures were delivered by some of the world's best scientists in the field and some of the topics covered include: (1) The possible application of STM in atomically resolved chemical analysis. (2) The principles of scanning force/friction and scanning near-field optical microscopes. (3) The scanning photoemission electron microscopes built at ELETTRA and SRRC, with a description of synchrotron radiation microscopy. (4) Recent progress in the development of spatially-resolved photoelectron microscopy, especially the use of zone plate photon optics. (5) The present status of non-scanning photoemission microscopy with slow electrons. (6) the BESSY 2 project for a non-scanning photoelectron microscope with electron optics. (7) Spatially-resolved in situ reaction studies of chemical waves and oscillatory phenomena with the UV photoemission microscope.
Hadron colliders probe physics at new energy frontiers and search for new particles and forces. In addition, hadron colliders now provide also an environment for precision physics. The present volume collects the results from recently completed runs at major colliders as well as new ideas about collider physics and techniques. It will serve as the main source of reference in the field for many years to come.
The first NATO Advanced Workshop on Quantum Tunneling of Magnetization (QTM) was organized and co-directed by Bernard Barbara, Leon Gunther, Nicolas Garcia, and Anthony Leggett and was held from June, 27 through July 1, 1994 in Grenoble and Chichilianne, France. These Proceedings include twenty-nine articles that represent the contributions of the participants in the Workshop. Quantum Tunneling of Magnetization is not only interesting for purely academic reasons. It was pointed out in the review article by L. Gunther in the December, 1990 issue of Physics World, that QTM may be destined to play a significant role within the next two decades in limiting the density of information storage in magnetic systems. Recent advances have indicated that this limitation may well be reached even earlier than first predicted. Furthermore, the number of people who have entered the field of study of QTM during these past few years has increased many fi)ld. The time was therefore opportune to hold a Workshop to bring together for the first time the leading researchers of QTM, both theoretical and experimental, so as to discuss the current status of the field. The most controversial issue at the time of the Workshop was how to establish r.eliable criteria for determining whether experimental results do indeed reveal manifestations of QTM. We believe that much progress was made at the Workshop on this issue.
This comprehensive report on sight correction through laser surgery provides the practitioner with solid background information from top industry researchers. Carefully illustrated, it details the latest techniques and clinical results in wavefront technology for laser surgery, which is now defining a new standard of practice. This second edition has been significantly expanded to include in-depth descriptions of important new advances as well as glimpses of what the future holds. The book will be indispensable to all wishing to expand their knowledge of customized refractive surgery with an understanding of the underpinning technology.
This modern presentation comprehensively addresses the principal issues in modern instrumentation, but without attempting an encyclopaedic reference. It covers the most important topics in electronics, sensors, measurements and acquisition systems, and will be an indispensable reference for readers in a wide variety of disciplines.
This technical book considers the application side of LDA techniques. Starting from the basic theories that are crucial for each LDA user, the main subject of the book is focused on diverse application methods. In details, it deals with universal methodical techniques that have been mostly developed in the last 15 years. The book thus gives for the first time an application reference for LDA users in improving the optical conditions and enhancing the measurement accuracies. It also provides the guidelines for simplifying the measurements and correcting measurement errors as well as for clarifying the application limits and extending the application areas of LDA techniques. Beside the treatments of some traditional optical and flow mechanical features influencing the measurement accuracies, the book shows a broad spectrum of LDA application methods in the manner of measuring the flow turbulence, resolving the secondary flow structures, and quantifying the optical aberrations at measurements of internal flows etc.. Thus, it also supports the further developments of both the hard- and software of LDA instrumentations.
This volume represents the primary lectures of the NATO Advanced Study Institute (ASI) on "Nuclear Magnetic Resonance in Modern Technology," which was held at Sarigerme Park (near the Dalaman Airport) on the southern Aegean shore of Turkey from August 23 to September 4, 1992. As indicated in the title, this ASI was aimed at examining, displaying, and perhaps influencing, the role of nuclear magnetic resonance (NMR) in modern technological activity. The lectures summarized in this volume and the numerous short contributed talks and posters were primarily aimed at the question, "What is NMR doing in support of modern technology?" During the main discussion periods and the numerous small scheduled meetings of specific interest groups this same topic was also addressed, along with questions like, "What could or should NMR be doing in support of modern technology?" With this kind of subject orientation, the organizers attempted to include a large participation at the ASI from scientists and engineers from diverse private industries in which NMR does, or perhaps should, play a substantial role in supporting or optimizing technology. Perhaps because of a combination of worldwide industrial contractions and residual corporate nervousness regarding the then recent Gulf War (which caused a one-year postponement of this ASI), the participation from private industry was numerically disappointing. We hope that this book will serve to bring the role of NMR in modern industry to the attention of numerous industrial scientists and engineers who were unable to attend the AS .
An innovative, unified, and comprehensive treatment of the geometric and electronic structure of surfaces. The book emphasizes fundamental aspects, such as the principles of surface crystallography and thermodynamics, the forces driving the rearrangement of the atoms, and the relationship between bonding and electronic structure. It especially illuminates the relationship between surface orientation, chemistry, energetics, and the resulting properties. Principles of Surface Physics develops general physical arguments and methods that enable readers to analyse novel surfaces and interfaces of new materials. This makes the book an indispensable reference to all those studying growth, surface-molecule interactions, self-assembled structures, and materials engineering.
Stochastic Resonance: Theory and Applications deals with the theory of noise-added systems and in particular with Stochastic Resonance, a quite novel theory that was introduced in the 1980s to provide better understanding of some natural phenomena (e.g. ice age recurrence). Following the very first works, a number of different applications to both natural and human-produced phenomena were proposed. The book aims to improve the understanding of noise-based techniques and to focus on practical applications of this class of phenomena (an aspect that has been very poorly investigated up to now). Based on this objective, the book is roughly divided into two parts. The first part deals with the essential theory of noise-added systems and in particular a new approach to noise-added techniques that allows a number of strategies proposed in previous years to be unified. The proposed approach also allows real-time control of the noise characteristics, assuring optimal system performance. In the second part a large number of applications are described in detail in the field of electric and electronic devices, with the aim of allowing readers to build their own experimental set. The book comes with a diskette of educational software that the authors developed. Stochastic Resonance: Theory and Applications is an invaluable reference for students, researchers and engineering professionals working in the fields of electric and electronic measurements, electronics and signal theory.
25 Die Ventile leiten nur wahrend einer sehr kurzen Zeit, namlich dann, wenn das Potential der Anode positiv gegentiber der Kathode ist. Fig. 24 zeigt eine dreistufige Anordnung. Unter der Annahme idealer Ventile und unter Vernach- lassigung der Streukapazitaten stellen sich an den Knotenpunkten 3, 2, 1 und 3*,2*,1* die in Fig. 25 wiedergegebenen Spannungen ein. Der hier dargestellte, idealisierte Generator liefert eine Leerlaufspannung von 6 U , wobei mit U o o die Amplitude der Transformatorspannung Uocoswt bezeichnet ist. fJ) Der Kaskadengenerator bei Belastung. Wird der Kaskadengenerator durch einen Widerstand oder durch ein Beschleunigungsrohr belastet, so sinkt natur- 8!.1o ~-------~-----0 u/;!.Io r-------"-L---7"c----~L--0 J!.Io Ig / ] !.Iocoswt Fig. 25. Leerlau!spannungen beim Generator in Fig. 24. Fig. 26. Der belastete Kaskadengenerator. gemaB die Ausgangsspannung, und zwar umso starker, je groBer der Belastungs- strom Ig ist. Unter Ig wollen wir den vom Generator gelieferten, arithmetischen Mittelwert des Stromes, also den abgegebenen Gleichstrom verstehen. Wahrend einer Periode lit der Wechselspannung wird der Glattungssaule somit die Ladung Q= Ig (11.1) f entzogen. Falls ein stationarer Zustand bestehen solI, muB diese Ladung periodisch wieder zugeftihrt werden. Dies geschieht dadurch, daB wahrend einer Halbwelle der Wechselspannung die Ladung Q von den Punkten 3* nach 3, bzw. 2* nach 2 und 1 * nach 1 flieBt, wahrend in der andern Halbwelle die Ladung Q von Erde nach 3 * bzw. von 3 nach 2* und von 2 nach 1 * transportiert wird.
The 9th International Symposium on High Energy Spin Physics, held in Bonn, 6-15 September 1990, attracted 280 participants from 16 countries. This meet ing covered not only fundamental experimental and theoretical spin phenomena but also technological developments in polarized beams and targets. For the first time intermediate energy spin physics with electron machines was discussed extensively. Highlights included the work on polarized high energy electron beams at LEP and TRISTAN and the failure of the standard model in connection with spin phenomena, in particular the growth of the spin asymmetry in violent proton-proton scattering. Also the presentation of different models in con nection with the still-unsolved 'proton spin crisis' and the proposals for four different experiments to determine the spin structure functions caused lively and sometimes controversial discussions. The Organizing Committee would like to thank all speakers for their excel lent talks, the conveners for the organization of the parallel sessions, and the International Advisory Committee for their advice. Four workshops preceded the symposium. 160 participants, among them many young physicists, discussed mainly technological spin problems. These papers are published in separate proceedings. We gratefully acknowledge the enthusiastic help of the members of our institute in preparing and running the conference and the workshops, especially Mrs. D. FaSbender, Mrs. E. Wendorf, Mrs. J. Wetzel, and Dr. U.Idschok."
This volume contains the proceedin,r. of the NATO Advanced Study Institute on "Forces in Scanning Probe Methods which was CG-sponsered and organized by the "Forum fUr N anowissenschaften". The conference was held in Schluchsee in the south- em Black Forest (Germany) from March 7-18, 1994. 30 invited lecturers giving tuto- rial talks of historical and recent research activities and about 100 contributed, oral and poster presentations from 130 people participating, created a very active and lestimulating, lively atmosphere. The inventions of scanning tunneling microscopy, atomic force microscopy and near field optical microsocopy opened a new field of research, called scanning probe meth- ods (SPM). During the last decade, the quality of image acquisition made tremendous progress due to advanced data acquisition systems, low noise electronics and suitable mechan- ical and micromechanical constructions. However, a lot of fundamental, unsolved questions about the interaction between probing tip and sample remain. This vol- ume contains 60 contributions dedicated to these problems. Most of the articles are review articles presenting. condensed and relevant information in a way suitable for both students and specialists. Topics that are covered are instrumental aspects, de- signs of force microscopes in various environments, such as ambient pressure, low temperature, ultrahip vacuum and liquids. An important part of the workshop was dedicated to theory, Including all initio calculations and molecular dynamics simula- tions. Mechanical properties, such as adhesion, friction and wear, on the micrometer and nanometer scale were also treated intensively.
This lecture note describes the main analytical approaches to stochastic cooling. The first is the time domain picture, in which the beam is rapidly sampled and a statistical analysis is used to describe the cooling behaviour. The second is the frequency domain picture, which is particularly useful since the observations made on the beam are mainly in this domain. This second picture is developed in detail to assess key components of modern cooling theory like mixing and signal shielding and to illustrate some of the diagnostic methods. Finally the use of a distribution function and the Fokker-Plank equation, which offer the most complete description of the beam during the cooling, are discussed.
Ram accelerators are among the most advanced tools for generating fluid dynamcis data in supersonic reacting systems. They require the combined action of combustion, wave systems and turbulence and are still a serious challenge for physicists and engineers. This book will serve as an introductionary textbook on ram accelerators and gives a thorough overview on research activities, performance modeling and high-pressure detonation dynamics.
It is for the first time that the subject of quantities and their respective units is dealt this much in detail, a glimpse of units of measurements of base quantities of length, time, mass and volume is given for ancient India, three and four dimensional systems of measurement units are critically examined, establishment of the fact that only four base units are needed to describe a system of units, the basics to arrive at the unit of a derived quantity are explained, basic, derived and dimensionless quantities including quantity calculus are introduced, life history of scientists concerned with measurements units are presented to be inspiring to working metrologists and students. The International System of Units including, Metre Convention Treaty and its various organs including International National of Weights and Measure are described. The realisation of base units is given in detail. Classes of derived units within the SI, units permitted for time to come, units outside SI but used in special fields of measurements are described. Methods to express large numbers are explained in detail. Multiples and sub-multiples prefixes and their proper use are also given. The latest trends to redefine the base Kilogram, Ampere, Kelvin and Mole on existing base units of mass, electric current, temperature and amount of substance, in terms of a single parameter or fundamental constants are briefly described. |
![]() ![]() You may like...
This Is How It Is - True Stories From…
The Life Righting Collective
Paperback
The Memoirs of the Crown Prince of…
Crown Prince of Germany 188 William
Hardcover
R940
Discovery Miles 9 400
Introduction to Public Health - Promises…
Raymond L. Goldsteen, Karen Goldsteen, …
Paperback
R2,294
Discovery Miles 22 940
The Proceedings of 11th Asia-Oceania…
Guan-Yuan Wu, Kuang-Chung Tsai, …
Hardcover
R5,844
Discovery Miles 58 440
Time and Performer Training
Mark Evans, Konstantinos Thomaidis, …
Hardcover
R4,472
Discovery Miles 44 720
|