![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific standards
This technical book considers the application side of LDA techniques. Starting from the basic theories that are crucial for each LDA user, the main subject of the book is focused on diverse application methods. In details, it deals with universal methodical techniques that have been mostly developed in the last 15 years. The book thus gives for the first time an application reference for LDA users in improving the optical conditions and enhancing the measurement accuracies. It also provides the guidelines for simplifying the measurements and correcting measurement errors as well as for clarifying the application limits and extending the application areas of LDA techniques. Beside the treatments of some traditional optical and flow mechanical features influencing the measurement accuracies, the book shows a broad spectrum of LDA application methods in the manner of measuring the flow turbulence, resolving the secondary flow structures, and quantifying the optical aberrations at measurements of internal flows etc.. Thus, it also supports the further developments of both the hard- and software of LDA instrumentations.
This volume is an outgrowth of the Second International Workshop on Macroscopic Quantum Coherence and Computing held in Napoli, Italy, in June 2000. This workshop gathered a number of experts from the major Universities and Research Institutions of several countries. The choice of the location, which recognizes the role and the traditions of Naples in this field, guaranteed the participants a stimulating atmosphere. The aim of the workshop has been to report on the recent theoretical and experimental results on the macroscopic quantum coherence of macroscopic systems. Particular attention was devoted to Josephson devices. The correlation with other atomic and molecular systems, exhibiting a macroscopic quantum behaviour, was also discussed. The seminars provided both historical overview and recent theoretical ground on the topic, as well as information on new experimental results relative to the quantum computing area. The first workshop on this topic, held in Napoli in 1998, has been ennobled by important reports on observations of Macroscopic Quantum Coherence in mesoscopic systems. The current workshop proposed, among many stimulating results, the first observations of Macroscopic Quantum Coherence between macroscopically distinct fluxoid states in rf SQUIDs, 20 years after the Leggett's proposal to experimentally test the quantum behavior of macroscopic systems. Reports on observations of quantum behaviour in molecular and magnetic systems, small Josephson devices, quantum dots have also been particularly stimulating in view of the realization of several possible q-bits.
An innovative, unified, and comprehensive treatment of the geometric and electronic structure of surfaces. The book emphasizes fundamental aspects, such as the principles of surface crystallography and thermodynamics, the forces driving the rearrangement of the atoms, and the relationship between bonding and electronic structure. It especially illuminates the relationship between surface orientation, chemistry, energetics, and the resulting properties. Principles of Surface Physics develops general physical arguments and methods that enable readers to analyse novel surfaces and interfaces of new materials. This makes the book an indispensable reference to all those studying growth, surface-molecule interactions, self-assembled structures, and materials engineering.
25 Die Ventile leiten nur wahrend einer sehr kurzen Zeit, namlich dann, wenn das Potential der Anode positiv gegentiber der Kathode ist. Fig. 24 zeigt eine dreistufige Anordnung. Unter der Annahme idealer Ventile und unter Vernach- lassigung der Streukapazitaten stellen sich an den Knotenpunkten 3, 2, 1 und 3*,2*,1* die in Fig. 25 wiedergegebenen Spannungen ein. Der hier dargestellte, idealisierte Generator liefert eine Leerlaufspannung von 6 U , wobei mit U o o die Amplitude der Transformatorspannung Uocoswt bezeichnet ist. fJ) Der Kaskadengenerator bei Belastung. Wird der Kaskadengenerator durch einen Widerstand oder durch ein Beschleunigungsrohr belastet, so sinkt natur- 8!.1o ~-------~-----0 u/;!.Io r-------"-L---7"c----~L--0 J!.Io Ig / ] !.Iocoswt Fig. 25. Leerlau!spannungen beim Generator in Fig. 24. Fig. 26. Der belastete Kaskadengenerator. gemaB die Ausgangsspannung, und zwar umso starker, je groBer der Belastungs- strom Ig ist. Unter Ig wollen wir den vom Generator gelieferten, arithmetischen Mittelwert des Stromes, also den abgegebenen Gleichstrom verstehen. Wahrend einer Periode lit der Wechselspannung wird der Glattungssaule somit die Ladung Q= Ig (11.1) f entzogen. Falls ein stationarer Zustand bestehen solI, muB diese Ladung periodisch wieder zugeftihrt werden. Dies geschieht dadurch, daB wahrend einer Halbwelle der Wechselspannung die Ladung Q von den Punkten 3* nach 3, bzw. 2* nach 2 und 1 * nach 1 flieBt, wahrend in der andern Halbwelle die Ladung Q von Erde nach 3 * bzw. von 3 nach 2* und von 2 nach 1 * transportiert wird.
Stochastic Resonance: Theory and Applications deals with the theory of noise-added systems and in particular with Stochastic Resonance, a quite novel theory that was introduced in the 1980s to provide better understanding of some natural phenomena (e.g. ice age recurrence). Following the very first works, a number of different applications to both natural and human-produced phenomena were proposed. The book aims to improve the understanding of noise-based techniques and to focus on practical applications of this class of phenomena (an aspect that has been very poorly investigated up to now). Based on this objective, the book is roughly divided into two parts. The first part deals with the essential theory of noise-added systems and in particular a new approach to noise-added techniques that allows a number of strategies proposed in previous years to be unified. The proposed approach also allows real-time control of the noise characteristics, assuring optimal system performance. In the second part a large number of applications are described in detail in the field of electric and electronic devices, with the aim of allowing readers to build their own experimental set. The book comes with a diskette of educational software that the authors developed. Stochastic Resonance: Theory and Applications is an invaluable reference for students, researchers and engineering professionals working in the fields of electric and electronic measurements, electronics and signal theory.
The 9th International Symposium on High Energy Spin Physics, held in Bonn, 6-15 September 1990, attracted 280 participants from 16 countries. This meet ing covered not only fundamental experimental and theoretical spin phenomena but also technological developments in polarized beams and targets. For the first time intermediate energy spin physics with electron machines was discussed extensively. Highlights included the work on polarized high energy electron beams at LEP and TRISTAN and the failure of the standard model in connection with spin phenomena, in particular the growth of the spin asymmetry in violent proton-proton scattering. Also the presentation of different models in con nection with the still-unsolved 'proton spin crisis' and the proposals for four different experiments to determine the spin structure functions caused lively and sometimes controversial discussions. The Organizing Committee would like to thank all speakers for their excel lent talks, the conveners for the organization of the parallel sessions, and the International Advisory Committee for their advice. Four workshops preceded the symposium. 160 participants, among them many young physicists, discussed mainly technological spin problems. These papers are published in separate proceedings. We gratefully acknowledge the enthusiastic help of the members of our institute in preparing and running the conference and the workshops, especially Mrs. D. FaSbender, Mrs. E. Wendorf, Mrs. J. Wetzel, and Dr. U.Idschok."
This book willbcof value to anyone who wishes to consider the use of SQUID-based magnetic sensing for anyone of a number of practical applications. The focus here is to examine in detail how SQUID technology is used and how. the results of the measurements obtained can be interpreted to provide useful information in a variety of real-world applications. The concentration is on those areas that have received the most attention, namely bioma etism and nondestructive evaluation, but. the topics chosen include as well, geophysics, underwater ordnance detection, accelerometry and a few somewhat more exotic applications. To provide a reasonable perspective. an attempt has been made to consider competing technologies for most applications, and in some cases to consider how SQUID-based technology may be integrated with other technologies to provide an optimum total-system configuration. It is also the intention of the editor, that this book will be of major value to those scientists and engineers who will be required to build both the essential components and complete cryogenic SQUID systems which will be utilized in the various applications presented. Thus, there is a comprehensive review of the principles of SQUID operation, and a detailed exposition on the fabrication of high-temperature-superconducting (HTS) SQUIDs. Although the market is currently dominated by low-temperature superconducting (L TS) SQUIDs, it is reasonably certain that in the near future HTS SQUIDs will take over in most situations."
Ram accelerators are among the most advanced tools for generating fluid dynamcis data in supersonic reacting systems. They require the combined action of combustion, wave systems and turbulence and are still a serious challenge for physicists and engineers. This book will serve as an introductionary textbook on ram accelerators and gives a thorough overview on research activities, performance modeling and high-pressure detonation dynamics.
The topics range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics.
This lecture note describes the main analytical approaches to stochastic cooling. The first is the time domain picture, in which the beam is rapidly sampled and a statistical analysis is used to describe the cooling behaviour. The second is the frequency domain picture, which is particularly useful since the observations made on the beam are mainly in this domain. This second picture is developed in detail to assess key components of modern cooling theory like mixing and signal shielding and to illustrate some of the diagnostic methods. Finally the use of a distribution function and the Fokker-Plank equation, which offer the most complete description of the beam during the cooling, are discussed.
The Thirteenth European Conference on Few-Body Problems in Phys- ics (European Few-Body Problems XIII) was held at the Elba Internation- al Physics Centre (EIPC) in Marciana Marina, Isola d'Elba, Italy, during September 9-14, 1991. The previous Conferences of the series, promoted by the European Few-Body Physics Research Committee, took place in Budapest (1972), Graz (1973), Tiibingen (1975), Vlieland (1976), Uppsala (1977), Dubna (1979), Sesimbra (1980), Ferrara (1981), Tbilisi (1984), Bala- tonfiired (1985), Fontevraud (1987), and Uzhgorod (1990). The European Few-Body Conferences represent a relevant opportunity for European scientists interested in few-body problems, of summarizing and updating, together with colleagues from countries all over the world, the status of art in this field of research, which ranges from the study of atomic and molecular structure, to nuclear and particle physics. The suc- cess of this series of Conferences, which also represent a bridge between the triennial IUPAP International Conferences on Few-Body Problems in Physics, testifies the relevance reached by few-body physics in various fields and the important theoretical and experimental contributions pro- vided by the European few-body community.
The International Conference Mesons and Light Nuclei, organized by the Institute of Nuclear Physics (INP), Rez, was held during July 2 - 7, 1995 in small north Bohemian town Straz pod Ralskem. It was the sixth in a series of meetings which took place previously at Liblice 74 and 81, Bechyne 85 and 88, and Prague 91. The conferences gained already their firm position among intermediate energy nuclear physics activities. International nuclear physics community strongly supported our intention to continue the series. This year's venue for the conference was the accommodation and social area of the DIAMO company at Straz. The goal of the meeting was to summarize the present situation and the future perspectives concerning the experimental investigations and theoreti cal descriptions of light nuclei and their interactions with electromagnetic and hadronic probes, mainly at intermediate energies. The scientific program of the conference included the following areas of research: nuclear physics with pions and antiprotons, T)-meson physics, baryonic systems with strangeness, relativis tic few-body dynamics, and electroweak nuclear interaction. Representatives from many international groups working within different experimental facili ties and with different theoretical methods were invited and asked to present their latest results and future research programs. The Straz conference, attended by 102 physicist from institutions in 22 countries, was sponsored by the Austrian Ministry for Science and Research, Czech Ministry for Industry and Trade, and by SKODA PRAHA a.s. Thanks to this sponsorship we could also invite several participants and students at essentially reduced cost."
It is for the first time that the subject of quantities and their respective units is dealt this much in detail, a glimpse of units of measurements of base quantities of length, time, mass and volume is given for ancient India, three and four dimensional systems of measurement units are critically examined, establishment of the fact that only four base units are needed to describe a system of units, the basics to arrive at the unit of a derived quantity are explained, basic, derived and dimensionless quantities including quantity calculus are introduced, life history of scientists concerned with measurements units are presented to be inspiring to working metrologists and students. The International System of Units including, Metre Convention Treaty and its various organs including International National of Weights and Measure are described. The realisation of base units is given in detail. Classes of derived units within the SI, units permitted for time to come, units outside SI but used in special fields of measurements are described. Methods to express large numbers are explained in detail. Multiples and sub-multiples prefixes and their proper use are also given. The latest trends to redefine the base Kilogram, Ampere, Kelvin and Mole on existing base units of mass, electric current, temperature and amount of substance, in terms of a single parameter or fundamental constants are briefly described.
It is apparent from the history of science, that few-body problems have an interdis ciplinary character. Newton, after solving the two-body problem so brilliantly, tried his hand at the Sun-Earth-Moon system. Here he failed in two respects: neither was he able to compute the motion of the moon accurately, nor did he understand the reason for that. It took a long time to understand the fundamental importance of Newton's failure, and only Poincare realised what was the fundamental difficulty in Newtons programme. Nowadays, the term deterministic chaos is associated with this problem. The deep insights of Poincare were neglected by the founding fathers of Quantum Physics. Thus history was repeated by Bohr and his students. After quantising the hydrogen atom, they soon found that the textbook case of a three-body problem in atomic physics, the 3He-atom, did not yield to the Bohr-Sommerfeld quantisation methods. Only these days do people realise what precisely were the difficulties connected to this semi classical way of treating quantum systems. Our field, as we know it today, began in principle in the early 1950's, when Watson sketched the outlines of three-body scattering theory. Mathematical rigour was achieved by Faddeev and thereafter, at the beginning of the 1960's, the quantum three-body prob lem, at least as far as short-range forces were concerned, w&s tamed. In the years that followed, through the work of others, who first applied Faddeev's methods, but later added new techniques, the three-and four-body problems became fully housebroken."
This book presents the latest advances in ultrafast science, including both ultrafast optics technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to physics, chemistry, biology, and engineering applications. Ultrafast technology has a profound impact in a wide range of applications, among them biomedical imaging, chemical dynamics, frequency standards, materials processing, and ultrahigh-speed communications. This book summarizes the results presented at the 13th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
This book is the result of two decades of research work which started with an accidental observation. One of my students, Dipl. phys. Volkmar Lenz, - ticed that the speckle pattern of laser light scattered by a cuvette containing diluted milk performed a strange motion every time he came near the cuvette with his thumb. After thinkingabout this e?ect we came to the conclusion that this motion can only be caused by scatteringparticles with di?erent velocities, as in the case of the di?raction pattern of an optical grating: A linear motion of the grating does not change the pattern whereas a rotation of the grating does. The observed speckle motion could then be explained qualitatively as produced by the inhomogeneous velocity of the convection within the cuvette which was produced by the heat of the thumb. The theoretical treatment of this e?ect revealed that the velocity gradient of the light scattering medium is responsible for the speckle motion. The idea to use this e?ect for developingmeasurement techniques for velocity gradients arose almost immediately. For that purpose we had to develop not only experimental set-ups to measure the pattern velocity but also the theory which describes the connection between this velocity and the velocity gradient. The result of this work together with the description of a method developed by another group forms the contents of this book. I am indebted to the students who worked in my laboratory and developed the measurement techniques. These were, in temporal order, Dr.
This book, in essence the proceedings of a NATO Advanced Study Institute with the same title, is designed to provide in-depth coverage of many, but not all, of the major current applications of superconductivity, and of many that still are being developed. It will be of value to scientists and engineers who have interests in the research and production aspects of the technology, as well as in the applications themselves. The ftrst three chapters (by Clarke, Vrba and Wikswo) are devoted to an understanding of the principles, fabrication and uses of SQUID magnetometers and gradiometers, with the greatest emphasis on biomagnetism and nondestructive evaluation (NDE). For the most part, traditional low-temperature superconductor (LTS) SQUIDs are used, but particularly for NDE, high-temperature superconductor (HTS) SQUIDs are proving useful and often more convenient. The succeeding three chapters (by Przybysz, Likharev and Chaloupka) cover broader aspects of superconducting electronics. The ftrst two of these deal primarily with digital L TS circuits, while the third discusses in great detail passive component applications using HTS materials. Currently, HTS ftlters are undergoing intense J3-site testing at cellular telephone base stations. While it is clear that HTS ftlters outperform conventional ftlters in reducing signal loss and allowing for more channels in a given bandwidth, it isn't yet certain that the cellular telephone industry sees sufficient economic beneftts to make a ftrm decision to use HTS ftlters universally in its systems. If this application is generally adapted, the market for these ftlters should be quite large.
This book constitutes the Proceedings of the 26th Symposium on Acoustical Imaging held inWindsor, Ontario, Canada during September 9-12, 2001. This traditional scientific event is recognized as a premier forum for the presentation of advanced research results in both theoretical and experimental development. The lAIS was conceived at a 1967Acoustical Holography meeting in the USA. Since then, these traditional symposia provide an opportunity for specialists who are working in this area to make new acquaintances, renew old friendships and present recent results of their research. Our Symposium has grown significantly in size due to a broad interest in various topics and to the quality of the presentations. For the firsttime in 40 years, the IAIS was held in the province of Ontario in Windsor, Canada's Automotive Capital and City of Roses. The 26th IAIS attracted over 100specialists from 13countries representing this interdisciplinary field in physical acoustics, image processing, applied mathematics, solid-state physics, biology and medicine, industrial applications and quality control technologies. The 26th lAIS was organized in the traditional way with only one addition-a Special Session "History of Acoustical Imaging" with the involvement of such well known scientists as Andrew Briggs, Noriyoshi Chubachi, Robert Green Jr., Joie Jones, Kenneth Erikson, and Bernhard Tittmann. Many of these speakers are well known scientists in their fields and we would like to thank them for making this session extremely successful.
In the tradition of its predecessors, this volume comprises a
selection of the best papers presented at the Ninth International
Symposium on Applications of Laser Techniques to Fluid Mechanics,
held in Lisbon in July 2000.
"Physics at KAON," an international meeting jointly organized by the KFA Jillich and TRI UMF, was held in the Physikzentrum Bad Honnef from June 7 through June 9, 1989. This was one of a series of meetings - the first one in Europe - in which plans for the medium energy physics laboratory KAON were presented and some aspects of the physics at this new facility were discussed. The meeting focussed mainly on the topics of hadron spectroscopy, J{ -meson scattering, strangeness in nuclei, and rare decays. Also presented were some of the research programs at SATURNE and COSY which may well lead to KAON physics in the future. These proceed ings include articles which summarize our current experimental and theoretical knowledge in the various areas, as well as papers which describe lines of research feasible with KAON. The large number of participants - limited, in fact, by the capacity of the Physikzentrum - clearly demonstrates the great interest of the European physics community in the research avenues which will be opened by the high-intensity hadron facilities. March 1990 D. Frekers, D.R. Gill, J. Speth Contents Opening remarks By E. Vogt ...................................................... Sl The TRIUMF kaon factory accelerators By M.K. Craddock ................................................ S3 Experimental facilities By P. Kitching ................................................... S9 Polarized internal targets at KAON By C.A. Miller ................................................... S21 Hyperons in the bound state approach to the Skyrme model."
Oaxaca, Mexico, was the place chosen by a large international group of scientists to meet and discuss on the recent advances on the understanding of the physical prop- ties of low dimensional systems; one of the most active fields of research in condensed matter in the last years. The International Symposium on the Physics of Low Dim- sions took place in January 16-20, 2000. The group of scientists converging into the historical city of Oaxaca, in the state of the same name, had come from Argentina, Chile, Venezuela, several places in Mexico, Canada, U. S. A. , England, France, Italy, Germany, Russia, and Switzerland. The presentations at the workshop provided sta- of-art reviews of many of the most important problems, currently under study. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Hans Christoph Siegmann, on his sixty-fifth birthday. This Festschrift recognizes the intellectual leadership of Professor Siegmann in the field and as a sincere homage to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Hans Christoph have been deeply impressed by his remarkable analytic mind as well as by his out of range kindness and generosity. Hans Christoph has contributed to the understanding of the difficult and very important problem of the magnetic properties of finite systems: surfaces, thin films, heterostructures.
For the last few years astrophysicists and elementary particle physicists have been working jointly on the following fascinating phenomena: 1. The solar neutrino puzzle and the question: What happens to the neutrinos on their way from the sun to the earth? 2. The growing evidence that our universe is filled with about 10 times more matter than is visible and the question: What is dark matter made of? 3. The supernovae explosions and the question: What do neutrinos tell us about such explosions and vice versa? The experimental investigation of these phenomena is difficult and involves unconventional techniques. These are presently under development, and bring together such seemingly disparate disciplines as astrophysics and elementary particle physics on the one hand and superconductivity and solid-state physics on the other. This book contains the proceedings of a workshop held in March 1987 at which the above subjects and their experimental investigation were discussed. The proposed experimental methods are very new. They involve frontier developments in low temperature and solid-state physics. The book should be useful to researchers and students who actively work on these subjects or plan to enter the field. It also offers the non-expert reader with some physics background a good survey of the activities in this field.
th This volume contains the written versions of invited lectures presented at the 28 "Internationale Universitatswochen fUr Kernphysik" in Schladming, Austria in March 1989. The generous support of our sponsors, the Austrian Ministry of Science and Research, the Government of Styria, and others, made it again possible to invite expert lecturers. The courses were centered on elementary particle physics to be performed with large accelerators accessible in the immediate future, including some reports on the current situation. Thanks to the efforts of the speakers it was possible to obtain excellent surveys. After the School the lecture notes were revised and partially rewritten in TPC by the authors, whom we thank for their labour. Unfortunately the report on the situation at SLAC by M. Swartz could not be included. Thanks are also due to the publishers for their patience. Graz, Austria H. Latal December 1989 H. Mitter v Contents Phenomenology of and Beyond the Standard Electroweak Model By A. Bartl, H. Pietschmann, and H. Stremnitzer (With 6 Figures) 1 1. The Standard Model (H. Pietschmann) . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Defining the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 3 Testing the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 4 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 5 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 6 Hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. Beyond the Standard Model: Supersymmetry (A. Bartl) . . . . . . . . . . . . 9 2. 1 Supersymmetric Extension of the Standard Model . . . . . . . . . . . . 10 2. 2 Production and Decay of Supersymmetric Particles . . . . . . . . . . . 17 3. Beyond the Standard Model: Composite Models (H.
This book is the proceedings of a workshop on problems at the interface between elementary particle and nuclear physics. It deals with experimental and theoretical developments in the investigation of hadrons and nuclei and in the study of their interactions at low and high energies, including nonperturbative quantum chromodynamics, quark confinement, hadron spectroscopy, hadronic interactions, strange particles, hypernuclei, structure functions of nucleons and nuclei, antiproton annihilation on nucleons and nuclei, quark-gluon plasmas and heavy-ion collisions. Plans for new accelerators are evaluated and some related topics in astrophysics, such as supernovae and neutrinos, are discussed. |
![]() ![]() You may like...
Eating Disorders: An Evidence-Based…
Walter Williamson
Hardcover
Radical Psychology - Multicultural and…
Susan O Gelberg, Mathew A Poteet, …
Paperback
R1,191
Discovery Miles 11 910
Binge Eating - Make Peace with Food
Simon Grant, Sophia Durner
Hardcover
|