![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific standards
The fifteenth European Conference on Few-Body Problems in Physics has taken place during the week of June 5th to 9th, in the lovely village of Peniscola, approximately midway between Barcelona and Valencia on the Mediterranean coast. This conference continues the tradition initiated in 1972 at Budapest, where the first conference took place, and followed in Graz (1973), Tiibingen (1975), Vlieland (1976), Uppsala (1977), Dubna (1979), Sesimbra (1980), Fer- rara (1981), Tbilisi (1984), Fontevraud (1987), Uzhgorod (1990), Elba (1991) and Amsterdam (1993). During this week, a total of one hundred and fifty one scientist were exchang- ing their knowledge and initiatives in this broad field of Few-Body Physics. Even if the name of the conference restricts its domain to Europe, there has been an important participation of scientists from non-European countries. A conference with more than twenty years of tradition is already an au- tonomous being, with a noticeable inertia. Nevertheless, it is a reasonable thought to bend this inertia trying to introduce some innovation, of course, without any damage to the basic structure and objectives of the conference.
This book provides tools well suited for the quantitative
investigation of semiconductor electron microscopy. These tools
allow for the accurate determination of the composition of ternary
semiconductor nanostructures with a spatial resolution at near
atomic scales. The book focuses on new methods including strain
state analysis as well as evaluation of the composition via the
lattice fringe analysis (CELFA) technique. The basics of these
procedures as well as their advantages, drawbacks and sources of
error are all discussed. The techniques are applied to quantum
wells and dots in order to give insight into kinetic growth effects
such as segregation and migration. In the first part of the book
the fundamentals of transmission electron microscopy are provided.
These are needed for an understanding of the digital image analysis
techniques described in the second part of the book. There the
reader will find information on different methods of
Tests of the current understanding of physics at the highest energies achievable in man-made experiments are performed at CERN's Large Hadron Collider. In the theory of the strong force within the Standard Model of particle physics - Quantum ChromoDynamics or QCD - confined quarks and gluons from the proton-proton scattering manifest themselves as groups of collimated particles. These particles are clustered into physically measurable objects called hadronic jets. As jets are widely produced at hadron colliders, they are the key physics objects for an early "rediscovery of QCD". This thesis presents the first jet measurement from the ATLAS Collaboration at the LHC and confronts the experimental challenges of precision measurements. Inclusive jet cross section data are then used to improve the knowledge of the momentum distribution of quarks and gluons within the proton and of the magnitude of the strong force.
Complete compendium on the physics and applications of telescope optics, underlying the original and oldest of astronomical instruments. Thoroughly scholarly work that provides both the historical perspective and the state-of-the-art technology, such as the 4-lens corrector of Delabre and the LADS corrector. Newly updated edition brings this authoritative work completely up to date.. From the reviews "... an unequalled reference for those who have interest in the field ... a unique reference in a superb presentation." ESO Messenger
"Spreadsheets in Science and Engineering" shows scientists and engineers at all levels how to analyze, validate and calculate data and how the analytical and graphic capabilities of spreadsheet programs (ExcelR) can solve these tasks in their daily work. The examples on the CD-ROM accompanying the book include material of undergraduate to current research level in disciplines ranging from chemistry and chemical engineering to molecular biology and geology.
Fabrication technologies for nanostructured devices have been
developed recently, and the electrical and optical properties of
such nanostructures are a subject of advanced research.
A comprehensive presentation of the complete spectrum of methods for CVD-diamond deposition and an overview of the most important applications.
A broad class of accelerators rests on the induction principle whereby the accelerating electrical fields are generated by time-varying magnetic fluxes. Particularly suitable for the transport of bright and high-intensity beams of electrons, protons or heavy ions in any geometry (linear or circular) the research and development of induction accelerators is a thriving subfield of accelerator physics. This text is the first comprehensive account of both the fundamentals and the state of the art about the modern conceptual design and implementation of such devices. Accordingly, the first part of the book is devoted to the essential features of and key technologies used for induction accelerators at a level suitable for postgraduate students and newcomers to the field. Subsequent chapters deal with more specialized and advanced topics.
Increasing possibilities of computer-aided data processing have caused a new revival of optical techniques in many areas of mechanical and chemical engi neering. Optical methods have a long tradition in heat and mass transfer and in fluid dynamics. Global experimental information is not sufficient for de veloping constitution equations to describe complicated phenomena in fluid dynamics or in transfer processes by a computer program. Furthermore, a detailed insight with high local and temporal resolution into the thermo and fluiddynamic situations is necessary. Sets of equations for computer program in thermo dynamics and fluid dynamics usually consist of two types of formulations: a first one derived from the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or turbulent diffusion. For reliably predicting the heat transfer, for example, the velocity and temperature field in the boundary layer must be known, or a physically realistic and widely valid correlation describing the turbulence must be avail able. For a better understanding of combustion processes it is necessary to know the local concentration and temperature just ahead of the flame and in the ignition zone."
Powerful new techniques, including heavy ion and exotic beams, are pushing the frontiers of nuclear physics and opening up a wealth of new fields of research. After introductory chapters on theoretical and experimental aspects of nuclear collisions and beams, Exotic Nuclear Physics'' offers articles by experienced lecturers on forefront topics in nuclear physics, such as the conquest of the neutron and the proton drip-lines, nuclear astrophysics, the equation of state of hypernuclear matter, nuclear supersymmetry and chaotic motion in nuclei. This volume continues the successful tradition of published lecture notes from the Hispalensis International Summer School. It will benefit graduate students and lecturers in search of advanced material for self-study and courses as will as researchers in search of a modern and comprehensive source of reference.
This book presents the recent advances and developments in control, automation, robotics and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation and results of an implementation for the solution of a real world problem. The book presents the results of the International Conference AUTOMATION 2014 held 26 - 28 March, 2014 in Warsaw, Poland on Automation Innovations and Future Prospectives The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems."
Optical Measurements, Modeling, and Metrology represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Biological Systems and Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; MEMS and Nanotechnology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.
This volume presents the latest ideas and developments in the world of beam diagnostics in particle accelerators and storage rings. It brings together papers by internationally recognized experts and by the younger scientists in the field. The lectures treat three main themes: - Phenomena used in beam observation - Single particle parameters - Collective parameters Each theme is introduced by one or more general lectures followed by detailed lectures on specific topics such as Schottky noise, closed orbits and impedance measurements. The overall aim was to show how to observe the diverse behavior of a beam, how to interpret and classify the observations and then how to control or correct the relevant parameters. The resulting volume contains much of the information needed to operate or commission a machine. The lecture program was supplemented by three seminars that looked at monitoring in e+e- colliders and at the special problems of nonplanar machines and experimental particle tracking. This unique and comprehensive collection of papers is the most up-to-date presently available.
This is the proceedings of the fourth school in a series of specialized courses organized by CERN's CAS and the American USPAS. It deals with intensity limitations. The contribution thoroughly edited for this publication fall into the following categories: self and environmental fields - coherent instabilities and their simulation - beam-beam interaction - other multi-particle effects - beam source limitations - engineering limitations. This exposition of the inner working of high-intensity particle beams addresses particle physicistsas well as those that commission new machines. The lecturers were chosenas being at the forefront of latest developments in this field.
The purpose of the proceedings of the Accelerator Schools is to introduce CERN- and US-students to advanced ideas and concepts from the frontiers of the rapidly developing field of accelerator physics and technology. Considerable emphasis is put on understanding the rich variety of mechanisms at work in a charged particle beam determining its behaviour. The subjects range from the very topical problem of dynamic aperture, which is of interest for predicting the stability of particles in the new machines such as SSC and LEP, through some better known subjects such as coherent and incoherent radiation, which is of increasing importance as a tool for industry and basic research in other disciplines, to the very latest and most exotic discovery of crystal beams, which is as yet in the totally academic phase of its development. This central theme of the internal physics of beams has been supplemented by lectures on the coming generation of linear colliders, the status of the superconducting project CEBAF, and on other topics.
The main theme of this book is the interaction of electrons with electromagnetic waves in the presence of periodic and quasi-periodic structures in vacuum, in view of applications in the design and operation of particle accelerators. The first part of the book is concerned with the textbook-like presentation of the basic material, in particular reviewing elementary electromagnetic phenomena and electron dynamics. The second part of the book describes the current models for beam-wave interactions with periodic and quasi-periodic structures. This is the basis for introducing, in the last part of the book, a number of particle and radiation sources that rest on these principles, in particular the free-electron laser, wake-field acceleration schemes and a number of other advanced particle accelerator concepts. This second edition brings this fundamental text up-to-date in view of the enormous advances that have been made over the last decade since the first edition was published. All chapters, as well as the bibliography, have been significantly revised and extended, and the number of end-of-chapter exercises has been further increased to enhance this book's usefulness for teaching specialized graduate courses.
This book is dedicated to the adoption of broadband microwave reflectometry (BMR)-based methods for diagnostics and monitoring applications. This electromagnetic technique has established as a powerful tool for monitoring purposes; in fact, it can balance several contrasting requirements, such as the versatility of the system, low implementation cost, real-time response, possibility of remote control, reliability, and adequate measurement accuracy. Starting from an extensive survey of the state of the art and from a clear and concise overview of the theoretical background, throughout the book, the different approaches of BMR are considered (i.e., time domain reflectometry - TDR, frequency domain reflectometry - FDR, and the TDR/FDR combined approach) and several applications are thoroughly investigated. The applications considered herein are very diverse from each other and cover different fields. In all the described procedures and methods, the ultimate goal is to endow them with a significant performance enhancement in terms of measurement accuracy, low cost, versatility, and practical implementation possibility, so as to unlock the strong potential of BMR.
This book will bring together experts in the field of astronomical photometry to discuss how their subfields provide the precision and accuracy in astronomical energy flux measurements that are needed to permit tests of astrophysical theories. Differential photometers and photometry, improvements in infrared precision, theimprovements in precision and accuracy of CCD photometry, the absolute calibration of flux, the development of the Johnson UBVRI photometric system and other passband systems to measure and precisely classify specific types of stars and astrophysical quantities, and the current capabilities of spectrophotometry, and polarimetry to provide precise and accurate data, will all be discussed in this volume. The discussion of differential or two-star photometers will include those developed for planetary as well as stellar photometry and will range from the Princeton polarizing photometer through the pioneering work of Walraven to the differential photometers designed to measure the ashen light of Venus and to counter the effects of aurorae at high latitude sites; the last to be discussed will be the Rapid Alternate Detection System (RADS) developed at the University of Calgary in the 1980s."
Volume 15 follows the format of earlier volumes in the series. The contents give the next installment in the varied aspects of acoustical imaging research. On this occasion, some emphasis was placed on the rela tionship of l1nderwater acoustics to acoustical imaging and a volume of papers under the title "Underwater Acoustics Proceedings from the 12th ICA Symposium held in Halifax," will appear at roughly the same time as this volume. There is no duplication in these volumes but they are in terlinked, at least to the extent that papers from common conference sessions appear in one or another volume. An innovation is the review paper presented at the beginning of the volume "A History of Acoustical Imaging," by G Wade. This fairly detailed review comes at a point in time when so much has been achieved and in some cases passed by, that a record of some of the earlier work might help to keep a balance with the large collections of research papers which have appeared in the many volumes."
This monograph and translation from the Russian describes in detail and comments on the fundamentals of metrology. The basic concepts of metrology, the principles of the International System of Units SI, the theory of measurement uncertainty, the new methodology of estimation of measurement accuracy on the basis of the uncertainty concept, as well as the methods for processing measurement results and estimating their uncertainty are discussed from the modern position. It is shown that the uncertainty concept is compatible with the classical theory of accuracy. The theory of random uncertainties is supplemented with their most general description on the basis of generalized normal distribution; the instrumental systematic errors are presented in connection with the methodology of normalization of the metrological characteristics of measuring instruments. The information about modern systems of traceability is given. All discussed theoretical principles and calculation methods are illustrated with examples.
This volume provides an overview of our current understanding of the physics related to: coronal structures and coronal heating; large-scale coronal shock waves and coronal mass ejections; particle beams in the solar corona and in the interplanetary medium; and explosive energy-release phenomena and particle acceleration. The different articles give a well-balanced presentation of relevant observations based upon various techniques, models and theories, providing a global view of these phenomena and of the underlying physics. In-situ measurements of particles and waves with ULYSSES and WIND and spectral and imaging data from SOHO and YOHKOH provide an unprecedented richness of relevant data. For their better understanding, radio observations - also included in this book - play a key role.
The ENAM2001 Conference was held on July 2-7, 2001 at the Rantasipi Aulanko Hotel in Hameenlinna in southern Finland. The conference was organized by the Department of Physics and the Accelerator Laboratory of the University of Jyvaskyla with support from the Physics Departments of the Universities of Helsinki and Turku. This conference, Exotic Nuclei and Atomic Masses has now gained the status of a major nuclear physics serial conference. The previous conference was held in Bellaire, Michigan, USA. The conference was first held in 1967 in Lysekil, Sweden, then entitled Conference on Nuclei Far from Stability. ENAM2001 welcomed 270 participants from 34 countries, including 17 accompanying per sons. The content of the program was selected based on the advice of the International Advisory Committee. The Committee members read and considered 253 submitted abstracts in selecting oral contributions. During the conference week 76 invited and oral talks were given. The rest of the contributions were presented in dedicated poster sessions. Many thanks go to the speakers of oral and poster presentations for their enthusiasm and for the high quality of their work which demonstrated the liveliness of the field. Participation in the lectures was high and contributions from the audience were important towards the success of this conference. The organizers would like to especially thank Cary Davids of Argonne National Laboratory for his comprehensive summary talk, which is also included in these Proceedings.
This book attempts to build a bridge between two sciences: chemistry and electronics. The inside of the black boxes the nuclear chemist uses daily is explained in simple electronic terms. Knowledge of the inside not only satisfies curiosity but helps one "get the most out of the available equipment." Likewise, this book tries to give sufficient understanding for not "over buying," that is to say, for buying the equipment which just serves the purpose, instead of buying the best so at least it will serve the purpose. The first three chapters give a concise understanding of what the area of applied nuclear chemistry is concerned with and what kind of equipment is generally used. Chapter 1 gives a theoretical background, while Chapter 3 deals with the practical implementations. Thus, these chapters provide the background to determine what one can expect from the experiments. The remainder of the book is devoted to the practical instrumentation of the experiments. Each chapter deals with specific types of instruments and devices, discusses briefly the electronics involved, considers the limitations, and investigates how and to what extent they can be circumvented. The advantage of having different contributors, each with his own practical experience, shows clearly in this latter aspect. Detailed practical knowledge and experience can be explained best by the person who has long been con cerned with the subject theoretically and practically."
Nanoindentation, Third Edition gives a detailed account of the most up-to-date research in this important field of materials testing. As in previous editions, extensive theoretical treatments are provided and explained in a clear and consistent manner that will satisfy both experienced and novice scientists and engineers. Additionally, numerous examples of the applications of the technique are provided directly from manufacturers of nanoindentation instruments. A helpful series of appendices provides essential reference information that includes a list of frequently asked questions. The new edition has been restructured to provide results of the latest research and developments in the field of mechanical testing while retaining the essential background and introductory, but authoritative nature, of the previous editions. The new edition also expands on the instrumentation and applications chapters by including material sourced direct from the instrument manufacturers in this field. Aimed at graduate student level, this book is designed to fill a need associated with the use of nanoindentation as a quantitative test method for mechanical properties of small volumes of materials. |
![]() ![]() You may like...
The Mollusks - A Guide to Their Study…
C.F. Sturm, T.A. Pearce, …
Hardcover
R1,759
Discovery Miles 17 590
Vicissitudes: Histories and Destinies of…
Naomi Segal, Sharon Kivland
Paperback
R928
Discovery Miles 9 280
|