![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific standards
The object of this NATO Advanced Study Institute was to pre sent a tutorial 'introduction both to the basic physics of recent spectacular advances achieved in the field of metrology and to the determination of fundamental physical constants. When humans began to qualify their description of natural phenomena, metrology, the science of measurement, developed along side geometry and mathematics. However, flam antiquity to modern times, the role of metrology was mostly restricted to the need of commercial, social or scientific transactions of local or at most national scope. Beginning with the Renaissance, and particularly in western Europe during the last century, metrology rapidly developed an international character as a result of growing needs for more accurate measurements and common standards in the emerging indus trial society. Although the concerns of metrology are deeply rooted to fundamental sciences, it was, until recently, perceived by much of the scientific community as mostly custodial in character."
This book provides an in-depth overview of on chip instrumentation technologies and various approaches taken in adding instrumentation to System on Chip (ASIC, ASSP, FPGA, etc.) design that are collectively becoming known as Design for Debug (DfD). On chip instruments are hardware based blocks that are added to a design for the specific purpose and improving the visibility of internal or embedded portions of the design (specific instruction flow in a processor, bus transaction in an on chip bus as examples) to improve the analysis or optimization capabilities for a SoC. DfD is the methodology and infrastructure that surrounds the instrumentation. Coverage includes specific design examples and discussion of implementations and DfD tradeoffs in a decision to design or select instrumentation or SoC that include instrumentation. Although the focus will be on hardware implementations, software and tools will be discussed in some detail.
Concepts of nonlinear physics are applied to an increasing number of research disciplines. With this volume, the editors offer a selection of articles on nonlinear topics in progress, ranging from physics and chemistry to biology and some applications of social science. The book covers quantum optics, electron crystallization, cellular or flow patterns in fluids and in granular media, biological systems, and the control of brain structures via neuronal excitation. Chemical patterns are looked at both in bulk solutions and on surfaces in heterogeneous systems. From regular structures, the authors turn to the more complex behavior in biology and physics, such as hydrodynamical turbulence, low-dimensional dynamics in solid-state physics, and gravity.
This book provides tools well suited for the quantitative
investigation of semiconductor electron microscopy. These tools
allow for the accurate determination of the composition of ternary
semiconductor nanostructures with a spatial resolution at near
atomic scales. The book focuses on new methods including strain
state analysis as well as evaluation of the composition via the
lattice fringe analysis (CELFA) technique. The basics of these
procedures as well as their advantages, drawbacks and sources of
error are all discussed. The techniques are applied to quantum
wells and dots in order to give insight into kinetic growth effects
such as segregation and migration. In the first part of the book
the fundamentals of transmission electron microscopy are provided.
These are needed for an understanding of the digital image analysis
techniques described in the second part of the book. There the
reader will find information on different methods of
The fifteenth European Conference on Few-Body Problems in Physics has taken place during the week of June 5th to 9th, in the lovely village of Peniscola, approximately midway between Barcelona and Valencia on the Mediterranean coast. This conference continues the tradition initiated in 1972 at Budapest, where the first conference took place, and followed in Graz (1973), Tiibingen (1975), Vlieland (1976), Uppsala (1977), Dubna (1979), Sesimbra (1980), Fer- rara (1981), Tbilisi (1984), Fontevraud (1987), Uzhgorod (1990), Elba (1991) and Amsterdam (1993). During this week, a total of one hundred and fifty one scientist were exchang- ing their knowledge and initiatives in this broad field of Few-Body Physics. Even if the name of the conference restricts its domain to Europe, there has been an important participation of scientists from non-European countries. A conference with more than twenty years of tradition is already an au- tonomous being, with a noticeable inertia. Nevertheless, it is a reasonable thought to bend this inertia trying to introduce some innovation, of course, without any damage to the basic structure and objectives of the conference.
"Spreadsheets in Science and Engineering" shows scientists and engineers at all levels how to analyze, validate and calculate data and how the analytical and graphic capabilities of spreadsheet programs (ExcelR) can solve these tasks in their daily work. The examples on the CD-ROM accompanying the book include material of undergraduate to current research level in disciplines ranging from chemistry and chemical engineering to molecular biology and geology.
Complete compendium on the physics and applications of telescope optics, underlying the original and oldest of astronomical instruments. Thoroughly scholarly work that provides both the historical perspective and the state-of-the-art technology, such as the 4-lens corrector of Delabre and the LADS corrector. Newly updated edition brings this authoritative work completely up to date.. From the reviews "... an unequalled reference for those who have interest in the field ... a unique reference in a superb presentation." ESO Messenger
The book describes RHEED (reflection high-energy electron diffraction) used as a tool for crystal growth. New methods using RHEED to characterize surfaces and interfaces during crystal growth by MBE (molecular beam epitaxy) are presented. Special emphasis is put on RHEED intensity oscillations, segregation phenomena, electron energy-loss spectroscopy and RHEED with rotating substrates.
Increasing possibilities of computer-aided data processing have caused a new revival of optical techniques in many areas of mechanical and chemical engi neering. Optical methods have a long tradition in heat and mass transfer and in fluid dynamics. Global experimental information is not sufficient for de veloping constitution equations to describe complicated phenomena in fluid dynamics or in transfer processes by a computer program. Furthermore, a detailed insight with high local and temporal resolution into the thermo and fluiddynamic situations is necessary. Sets of equations for computer program in thermo dynamics and fluid dynamics usually consist of two types of formulations: a first one derived from the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or turbulent diffusion. For reliably predicting the heat transfer, for example, the velocity and temperature field in the boundary layer must be known, or a physically realistic and widely valid correlation describing the turbulence must be avail able. For a better understanding of combustion processes it is necessary to know the local concentration and temperature just ahead of the flame and in the ignition zone."
Fabrication technologies for nanostructured devices have been
developed recently, and the electrical and optical properties of
such nanostructures are a subject of advanced research.
Recent rapid advances in femtosecond technology have had a great impact on their industrial applications such as: ultrafast optoelectronic devices and optical telecommunication systems, ultrashort-pulse lasers and measurement systems, and the development of novel materials for ultrafast functions. In this book, a wealth of knowledge covering requirements in applications details of recent achievements in important technical areas is presented by world-prominent authors in a concise, systematic form. As a whole, this is the first comprehensive book on the emerging field of femtosecond technology.
A broad class of accelerators rests on the induction principle whereby the accelerating electrical fields are generated by time-varying magnetic fluxes. Particularly suitable for the transport of bright and high-intensity beams of electrons, protons or heavy ions in any geometry (linear or circular) the research and development of induction accelerators is a thriving subfield of accelerator physics. This text is the first comprehensive account of both the fundamentals and the state of the art about the modern conceptual design and implementation of such devices. Accordingly, the first part of the book is devoted to the essential features of and key technologies used for induction accelerators at a level suitable for postgraduate students and newcomers to the field. Subsequent chapters deal with more specialized and advanced topics.
This book presents the recent advances and developments in control, automation, robotics and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation and results of an implementation for the solution of a real world problem. The book presents the results of the International Conference AUTOMATION 2014 held 26 - 28 March, 2014 in Warsaw, Poland on Automation Innovations and Future Prospectives The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems."
Measuring Technology and Mechatronics Automation in Electrical Engineering includes select presentations on measuring technology and mechatronics automation related to electrical engineering, originally presented during the International Conference on Measuring Technology and Mechanatronics Automation (ICMTMA2012). This Fourth ICMTMA, held at Sanya, China, offered a prestigious, international forum for scientists, engineers, and educators to present the state of the art of measuring technology and mechatronics automation research.
Powerful new techniques, including heavy ion and exotic beams, are pushing the frontiers of nuclear physics and opening up a wealth of new fields of research. After introductory chapters on theoretical and experimental aspects of nuclear collisions and beams, Exotic Nuclear Physics'' offers articles by experienced lecturers on forefront topics in nuclear physics, such as the conquest of the neutron and the proton drip-lines, nuclear astrophysics, the equation of state of hypernuclear matter, nuclear supersymmetry and chaotic motion in nuclei. This volume continues the successful tradition of published lecture notes from the Hispalensis International Summer School. It will benefit graduate students and lecturers in search of advanced material for self-study and courses as will as researchers in search of a modern and comprehensive source of reference.
Optical Measurements, Modeling, and Metrology represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Biological Systems and Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; MEMS and Nanotechnology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.
The book describes the fundamentals, latest developments and use of key experimental techniques for semiconductor research. It explains the application potential of various analytical methods and discusses the opportunities to apply particular analytical techniques to study novel semiconductor compounds, such as dilute nitride alloys. The emphasis is on the technique rather than on the particular system studied.
Interferometry, the most precise measurement technique known today, exploits the wave-like nature of the atoms or photons in the interferometer. As expected from the laws of quantum mechanics, the granular, particle-like features of the individually independent atoms or photons are responsible for the precision limit, the shot noise limit. However this "classical" bound is not fundamental and it is the aim of quantum metrology to overcome it by employing entanglement among the particles. This work reports on the realization of spin-squeezed states suitable for atom interferometry. Spin squeezing was generated on the basis of motional and spin degrees of freedom, whereby the latter allowed the implementation of a full interferometer with quantum-enhanced precision.
This is the proceedings of the fourth school in a series of specialized courses organized by CERN's CAS and the American USPAS. It deals with intensity limitations. The contribution thoroughly edited for this publication fall into the following categories: self and environmental fields - coherent instabilities and their simulation - beam-beam interaction - other multi-particle effects - beam source limitations - engineering limitations. This exposition of the inner working of high-intensity particle beams addresses particle physicistsas well as those that commission new machines. The lecturers were chosenas being at the forefront of latest developments in this field.
The purpose of the proceedings of the Accelerator Schools is to introduce CERN- and US-students to advanced ideas and concepts from the frontiers of the rapidly developing field of accelerator physics and technology. Considerable emphasis is put on understanding the rich variety of mechanisms at work in a charged particle beam determining its behaviour. The subjects range from the very topical problem of dynamic aperture, which is of interest for predicting the stability of particles in the new machines such as SSC and LEP, through some better known subjects such as coherent and incoherent radiation, which is of increasing importance as a tool for industry and basic research in other disciplines, to the very latest and most exotic discovery of crystal beams, which is as yet in the totally academic phase of its development. This central theme of the internal physics of beams has been supplemented by lectures on the coming generation of linear colliders, the status of the superconducting project CEBAF, and on other topics.
This book is dedicated to the adoption of broadband microwave reflectometry (BMR)-based methods for diagnostics and monitoring applications. This electromagnetic technique has established as a powerful tool for monitoring purposes; in fact, it can balance several contrasting requirements, such as the versatility of the system, low implementation cost, real-time response, possibility of remote control, reliability, and adequate measurement accuracy. Starting from an extensive survey of the state of the art and from a clear and concise overview of the theoretical background, throughout the book, the different approaches of BMR are considered (i.e., time domain reflectometry - TDR, frequency domain reflectometry - FDR, and the TDR/FDR combined approach) and several applications are thoroughly investigated. The applications considered herein are very diverse from each other and cover different fields. In all the described procedures and methods, the ultimate goal is to endow them with a significant performance enhancement in terms of measurement accuracy, low cost, versatility, and practical implementation possibility, so as to unlock the strong potential of BMR.
This book will bring together experts in the field of astronomical photometry to discuss how their subfields provide the precision and accuracy in astronomical energy flux measurements that are needed to permit tests of astrophysical theories. Differential photometers and photometry, improvements in infrared precision, theimprovements in precision and accuracy of CCD photometry, the absolute calibration of flux, the development of the Johnson UBVRI photometric system and other passband systems to measure and precisely classify specific types of stars and astrophysical quantities, and the current capabilities of spectrophotometry, and polarimetry to provide precise and accurate data, will all be discussed in this volume. The discussion of differential or two-star photometers will include those developed for planetary as well as stellar photometry and will range from the Princeton polarizing photometer through the pioneering work of Walraven to the differential photometers designed to measure the ashen light of Venus and to counter the effects of aurorae at high latitude sites; the last to be discussed will be the Rapid Alternate Detection System (RADS) developed at the University of Calgary in the 1980s."
This volume presents the latest ideas and developments in the world of beam diagnostics in particle accelerators and storage rings. It brings together papers by internationally recognized experts and by the younger scientists in the field. The lectures treat three main themes: - Phenomena used in beam observation - Single particle parameters - Collective parameters Each theme is introduced by one or more general lectures followed by detailed lectures on specific topics such as Schottky noise, closed orbits and impedance measurements. The overall aim was to show how to observe the diverse behavior of a beam, how to interpret and classify the observations and then how to control or correct the relevant parameters. The resulting volume contains much of the information needed to operate or commission a machine. The lecture program was supplemented by three seminars that looked at monitoring in e+e- colliders and at the special problems of nonplanar machines and experimental particle tracking. This unique and comprehensive collection of papers is the most up-to-date presently available. |
![]() ![]() You may like...
Hope in Health - The Socio-Politics of…
Alan Petersen
Hardcover
Connect: Writing For Online Audiences
Maritha Pritchard, Karabo Sitto
Paperback
![]()
Advances in Cyber Security Analytics and…
Shishir K. Shandilya, Neal Wagner, …
Paperback
R4,309
Discovery Miles 43 090
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, …
Paperback
![]()
|