![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific standards
Square-wave voltammetry is a technique readily available to every researcher, scientist, engineer and practitioner applying modern electrochemical measurement systems. It is of beneficial use in analytical applications and in fundamental studies of electrode mechanisms. But the optimised exploitation of this technique is only possible for those with a detailed knowledge of signal generation and of the thermodynamics and kinetics involved. This volume, written by three distinguished experts, systematically delivers the complete and in-depth information that enables both researchers and users of square-wave voltammetry to apply this technique effectively. Square-Wave Voltammetry also offers an appendix on mathematical modeling and a chapter on the most important electrode mechanisms which briefly reviews the underlying theory and numerical formulae intrinsic for simulating experiments with popular software tools, e.g. Mathcad (R).
The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop's contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long learning process"'. In this sense, this book will be a reference point for all future efforts to improve instrument calibration procedures in astronomy.
The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the quantum theory. This multi-authored book, written as an introductory guide for newcomers to the subject, as well as a useful source of information for the expert, covers many of the open questions. The book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory.
Fundamentals of Optical Fiber Sensor Technology The field of optical fiber sensors continues to expand and develop, being increasingly influenced by new applications of the technologies that have been the topics of research for some years. In this way, the subject continues to mature and reach into new areas of engineering. This text in the series on Optical Fiber Sensor Technology provides a foundation for a better understanding of those developments in the basic science and its applications in fiber sensors, underpinning the subject today. This book builds upon the work in an earlier single volume which covered a broad area of the subject, but which now, in this, volume 1 of the series, focuses upon the fundamentals and essentials of the technology. Material which is included has been carefully reviewed and in most cases thoroughly revised and expanded to reflect the current state of the subject, and provide an essential background for the more applications-oriented content of the subsequent volumes of the series. This volume opens with a status paper on optical fiber sensor technology, by Kenneth Grattan and Tong Sun providing in it a flavor of the main topics in the field and giving an essential overview at the sort of systems which are discussed in more detail in the other chapters in the whole series. An extensive publication list of readily accessible papers reflecting these topics is included.
This first book on pulsed magnet design deals with the design of pulsed, non-destructive coils for the generation of high magnetic fields. It provides readers with a concise and comprehensive text describing every aspect of coil construction.
This second edition is a thoroughly revised, updated and expanded version of a classic text, with lots of new material on electronic signal creation, amplification and shaping. It 's still a thorough general introduction, too, to the theory and operation of drift chambers. The topics discussed include the basics of gas ionization, electronic drift and signal creation and discuss in depth the fundamental limits of accuracy and the issue of particle identification.
In a ?rst approximation, certainly rough, one can de?ne as non-crystalline materials those which are neither single-crystals nor poly-crystals. Within this category, we canincludedisorderedsolids, softcondensed matter, andlivesystemsamong others. Contrary to crystals, non-crystalline materials have in common that their intrinsic structures cannot be exclusively described by a discrete and periodical function but by a continuous function with short range of order. Structurally these systems have in common the relevance of length scales between those de?ned by the atomic and the macroscopic scale. In a simple ?uid, for example, mobile molecules may freely exchange their positions, so that their new positions are permutations of their old ones. By contrast, in a complex ?uid large groups of molecules may be interc- nected so that the permutation freedom within the group is lost, while the p- mutation between the groups is possible. In this case, the dominant characteristic length, which may de?ne the properties of the system, is not the molecular size but that of the groups. A central aspect of some non-crystalline materials is that they may self-organize. This is of particular importance for Soft-matter materials. Self-organization is characterized by the spontaneous creation of regular structures at different length scales which may exhibit a certain hierarchy that controls the properties of the system. X-ray scattering and diffraction have been for more than a hundred years an essential technique to characterize the structure of materials. Quite often scattering anddiffractionphenomenaexhibitedbynon-crystallinematerialshavebeenreferred to as non-crystalline diffractio
A translation of a successful Russian monograph, this is the first book dealing comprehensively and on a scientific level with the insulation of high-voltage electrophysical systems. Prof. Ushakov is a respected authority in this field.
Storageandcoolingtechniquesforchargedparticlesgainmoreandmoreimportance in various areas of modern science. They developed into a universal tool especially when used for precision measurements. For this purpose, there are mainly two types ofiontrapsinuse: radiofrequency quadrupole (Paul)trapswhichuseatime-varying quadrupolar electric ?eld applied to the electrodes for con?nement and Penning traps where a superposition of a homogeneous magnetic ?eld with a weak el- trostatic quadrupolar ?eld is used. Already the very ?rst experiments in ion traps, performed by their inventors Wolfgang Paul and Hans Dehmelt, paved the way for astonishingly precise measurements of fundamental quantities like the electron and positron g-factors and the ?ne-structure constant ?. Their work was honored with the Nobel Prize in physics for "the development of the ion trap technique" in 1989. Sincethenmanyexperimental physicistsworldwidehavebeenusinganddeveloping different kinds of ion traps. Today, ion traps are applied widely for instance in mass spectrometry, metrology, plasma physics, molecular and cluster physics, quantum computing, atomic and nuclear physics as well as in chemistry. Precise investigations are able to link measurable quantities to fundamental - pects of physics. Due to the achievable precision, ion traps have been used for this subjectandattractedaconferenceseries"TrappedChargedParticlesandFundam- tal Interactions." Along the main idea of that conference we organized a Heraeus Winter School that took place in Hirschegg, Austria, in spring 2006. Inspired by the success and the interest from the students we planned a book that should contain the key components of the school: interesting, introductory and up-to-date lectures connected with ion traps.
Speckle photography is an advanced experimental technique used for quantitatve determination of density, velocity and temperature fields in gas, liquid, and plasma flows. This book presents the most important equations for the diffraction theory of speckle formation and the statistical properties of speckle fields. It also describes experimental set-ups and the equipment needed to implement these methods. Speckle photography methods for automatic data acquisition and processing are considered and examples for their use are given.
This book brings together contributions from internationally renowned experts in the biochip field. The authors present not only their latest research work, but also discuss current trends in biochip technology. Specific topics range from microarray technology and its applications to lab-on-a-chip technology.
This book is intended for scientists and engineers in the field of micro- and nano electro-mechanical systems (MEMS and NEMS) and introduces the development of cantilever-based sensor systems using CMOS-compatible micromachining from the design concepts and simulations to the prototype. It is also a useful resource for researchers on cantilever sensors and resonant sensors in general The reader will become familiar with the potential of the combination of two technological approaches: IC fabrication technology, notably CMOS technology, and silicon micromachining and the resulting microstructures such as cantilever beams. It was recognized early that these two technologies should be merged in order to make the microstructures smart and devise integrated microsystems with on-chip driving and signal conditioning circuitry - now known as CMOS MEMS or, with the arrival of nanostructures, CMOS NEMS. One way to achieve the merger is the post-processing micro- or nano- machining of finished CMOS wafers, some of which is described in this book. The book introduces this approach based on work carried out at the Physical Electronics Laboratory of ETH Zurich on arrays of cantilever transducers with on-chip driving and signal conditioning circuitry. These cantilevers are familiar from Scanning Probe Microscopy (SPM) and allow the sensitive detection of phys ical quantities such as forces and mass changes. The book is divided into three parts. First, general aspects of cantilever resona tors are introduced, e. g. their resonant behavior and possible driving and sensing mechanisms."
Here is a new method for calculating heat transfer in coupled convective-conductive fluid-wall systems under periodical intensity oscillations in fluid flow. The true steady state mean value of the heat transfer coefficient must be multiplied by a newly defined coupling factor, which is always smaller than one and depends on the coupling parameters Biot number, Fourier number as well as dimensionless geometry and oscillation parameters. Includes characteristic solved problems, with tables and diagrams.
Research in the field of shock physics and ballistic impact has always been intimately tied to progress in development of facilities for accelerating projectiles to high velocity and instrumentation for recording impact phenomena. The chapters of this book, written by leading US and European experts, cover a broad range of topics and address researchers concerned with questions of material behaviour under impulsive loading and the equations of state of matter, as well as the design of suitable instrumentation such as gas guns and high-speed diagnostics. Applications include high-speed impact dynamics, the inner composition of planets, syntheses of new materials and materials processing. Among the more technologically oriented applications treated is the testing of the flight characteristics of aeroballistic models and the assessment of impacts in the aerospace industry.
This book recounts results obtained via the Infrared Space Observatory (ISO) on comets, in the close environment of pre-main sequence stars, in the interstellar medium, and in the final stages of stellar life, using molecular hydrogen, ubiquitous crystalline silicates, water and ices. ISO has enabled investigation of the fuelling mechanism of galaxies, and new understanding of luminous infrared galaxies and their role in shaping present galaxies and in producing the cosmic infrared background.
The first edition of this book demystified the process of well log analysis for students, researchers and practitioners. In the two decades since, the industry has changed enormously: technical staffs are smaller, and hydrocarbons are harder to locate, quantify, and produce. New drilling techniques have engendered new measurement devices incorporated into the drilling string. Corporate restructuring and the "graying" of the workforce have caused a scarcity in technical competence involved in the search and exploitation of petroleum. The updated 2nd Edition reviews logging measurement technology developed in the last twenty years, and expands the petrophysical applications of the measurements.
This book offers a concise presentation of theoretical concepts characterizing and quantifying the slowing down of swift heavy ions in matter. Although the penetration of charged particles through matter has been studied for almost a hundred years, the quantitative theory for swift penetrating ions heavier than helium has been developed mainly during the past decade and is still progressing rapidly. The book addresses scientists and engineers working at accelerators with an interest in materials analysis and modification, medical diagnostics and therapy, mass spectrometry and radiation damage, as well as atomic and nuclear physicists. Although not a textbook, this monograph represents a unique source of state-of-the-art information that is useful to a university teacher in any course involving the interaction of charged particles with matter.
A consistent, up-to-date description of the extremely manifold and varied experimental techniques which nowadays enable work with neutral particles. Th book lays the physical foundations of the various experimental techniques, which utilize methods from most fields in physics.
This 4th volume of LIGHT SCATTERING REVIEWS is devoted to modern knowledge and milestones in both experimental and theoretical techniques related to light scattering and radiative transport problems. It consists of 3 chapters comprising 12 contributions written by leading world experts in their respective fields. The general focus of the book is on single light scattering and radiative transfer. The three chapters are devoted to experimental studies in the optics of light scattering media. The first chapter consists of three parts: In the first part, the main properties of scattering matrices are presented in a systematic way, together with polarimetric decomposition theorems in a great detail. The Green s function techniques for plane wave scattering by nonspherical particles is introduced in the second part. Different conceptual advantages and disadvantages of various numerical schemes developed in the past for the calculation of light scattering and absorption properties of small particles are discussed. The chapter concludes with studies of representations of the rotation group and T-matrix methods as applied for the calculation of optical properties of small particles with various habits. The second chapter of the book describes recent results in the broad area of forward and inverse problems of the radiative transfer. The first paper surveys techniques for theoretical studies of light scattering and polarization of molecular atmosphere. The application of time-dependent radiative transfer equation for cloud remote sensing and the peculiarities of radiative transfer of fluorescent and bioluminescent light in biological tissues are then considered, together with the importance of optical imaging in clinical and pre-clinical applications. The applications of the linearized radiative transfer equation and inverse problems for a particular case of the spherical atmosphere are included. The final chapter of the book covers recent advances in the experimental studies in the field of light scattering media optics. The instruments, measurements, and data processing used in experimental studies of optical properties of small particles using an imaging technique are extensively described before a study of aerosols in a controlled environment using static and dynamic light scattering. The book ends with a description of advances in dynamic light scattering techniques. This fourth volume gives a valuable picture of recent developments in the areas of single light scattering, radiative transfer in particulate media (e.g., terrestrial atmosphere and tissues), and inverse problems for multiple scattering media. It will further facilitate studies in light scattering media optics and aid researchers across various scientific fields, including astronomy, meteorology, biophysics, medical optics and geophysics."
Thermoluminescence (TL) is a well-established technique widely used in do- metric and dating applications. Although several excellent reference books exist which document both the t- oretical and experimental aspects of TL, there is a general lack of books that deal withspeci?cnumericalandpracticalaspectsofanalyzingTLdata. Manytimesthe practicaldetailsofanalyzingnumericalTLglowcurvesandofapplyingtheoretical models are dif?cult to ?nd in the published literature. The purpose of this book is to provide a practical guide for both established researchers and for new graduate students entering the ?eld of TL and is intended to be used in conjunction with and as a practical supplement of standard textbooks in the ?eld. Chapter1laysthemathematicalgroundworkforsubsequentchaptersbyprese- ingthefundamentalmathematicalexpressionsmostcommonlyusedforanalyzing experimental TL data. Chapter2presentscomprehensiveexamplesofTLdataanalysisforglowcurves following ?rst-, second-, and general-order kinetics. Detailed analysis of num- ical data is presented by using a variety of methods found in the TL literature, with particular emphasis in the practical aspects and pitfalls that researchers may encounter. Special emphasis is placed on the need to use several different me- ods to analyze the same TL data, as well as on the necessity to analyze glow curves obtained under different experimental conditions. Unfortunately, the lit- ature contains many published papers that claim a speci?c kinetic order for a TL peak in a dosimetric material, based only on a peak shape analysis. It is hoped that the detailed examples provided in Chapter 2 will encourage more comprehensive studies of TL properties of materials, based on the simultaneous use of several different methods of analysis.
This book describes the analysis and design of precision temperature sensors in CMOS IC technology, focusing on so-called smart temperature sensors, which provide a digital output signal that can be readily interpreted by a computer. The text shows how temperature characteristics can be used to obtain an accurate digital temperature reading. The book ends with a detailed description of three prototypes, one of which achieves the best performance reported to date.
This monograph contains a number of problems with signal detection theory, presenting a generalized observation model for signal detection problems. The model includes several interesting and common special cases, such as those describing additive noise, multiplicative noise and signal-dependent noise.
Vividly and in some depth retraces the golden years of particle physics as witnessed by one of the scientists who made seminal contributions to the understanding of what is now known as the Standard Model of particle physics. It will provide the interested reader with a first-hand account and deeper understanding of the multilayered and sinous development that finally led to the present architecture of this theory. Combines particle physics with insightful stories about fellow physicists of some note and the political turmoil of his times.
Since the time our first book Fault Diagnosis in Dynamic Systems: The ory and Applications was published in 1989 by Prentice Hall, there has been a surge in interest in research and applications into reliable methods for diag nosing faults in complex systems. The first book sold more than 1,200 copies and has become the main text in fault diagnosis for dynamic systems. This book will follow on this excellent record by focusing on some of the advances in this subject, by introducing new concepts in research and new application topics. The work cannot provide an exhaustive discussion of all the recent research in fault diagnosis for dynamic systems, but nevertheless serves to sample some of the major issues. It has been valuable once again to have the co-operation of experts throughout the world working in industry, gov emment establishments and academic institutions in writing the individual chapters. Sometimes dynamical systems have associated numerical models available in state space or in frequency domain format. When model infor mation is available, the quantitative model-based approach to fault diagnosis can be taken, using the mathematical model to generate analytically redun dant alternatives to the measured signals. When this approach is used, it becomes important to try to understand the limitations of the mathematical models i. e., the extent to which model parameter variations occur and the effect of changing the systems point of operation."
Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers, and researchers. |
![]() ![]() You may like...
Supervisory Control of Discrete Event…
John O. Moody, Panos J. Antsaklis
Hardcover
R4,463
Discovery Miles 44 630
Practising Strategy - A Southern African…
Peet Venter, Tersia Botha
Paperback
![]() R755 Discovery Miles 7 550
Implementing Evidence-Based Academic…
Sylvia Rosenfield, Virginia Wise Berninger
Hardcover
R2,583
Discovery Miles 25 830
Integration and Control of Distributed…
Hamidreza Nazaripouya
Hardcover
|