![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific standards
This book presents and introduces ellipsometry in nanoscience and nanotechnology making a bridge between the classical and nanoscale optical behaviour of materials. It delineates the role of the non-destructive and non-invasive optical diagnostics of ellipsometry in improving science and technology of nanomaterials and related processes by illustrating its exploitation, ranging from fundamental studies of the physics and chemistry of nanostructures to the ultimate goal of turnkey manufacturing control. This book is written for a broad readership: materials scientists, researchers, engineers, as well as students and nanotechnology operators who want to deepen their knowledge about both basics and applications of ellipsometry to nanoscale phenomena. It starts as a general introduction for people curious to enter the fields of ellipsometry and polarimetry applied to nanomaterials and progresses to articles by experts on specific fields that span from plasmonics, optics, to semiconductors and flexible electronics. The core belief reflected in this book is that ellipsometry applied at the nanoscale offers new ways of addressing many current needs. The book also explores forward-looking potential applications.
Housed by a 4 m diameter tunnel of 27 km circumference, with huge underground labs and numerous surface facilities, and set up with a precision of 0.1 mm per kilometer, the Large Electron-Positron Collider (LEP) was not only the largest but also one of the most sophisticated scientific research instruments ever created by Man. Located at CERN, near Geneva, LEP was built during the years 1983 - 1989, was operational until 2000, and corroborated the standard model of particle physics through continuous high precision measurements. The Author, director-general of CERN during the crucial period of the construction of LEP, recounts vividly the convoluted decision-making and technical implementation processes - the tunnel alone being a highly challenging geo- and civil engineering project - and the subsequent extremely fruitful period of scientific research. Finally he describes the difficult decision to close down LEP, at a time when the discovery of the Higgs boson seemed within reach. LEP was eventually dismantled in 2000, enabling the tunnel to be reused for building the next generation machine, the much more powerful Large Hadron Collider (LHC), an upgrade then called LEP3 and foreseen from the beginning. It became operational just as this account was being completed. Written by the main protagonist responsible for making LEP a reality, this is the definitive inside story of a remarkable machine and the many thousands of scientists and engineers from around the world, whose efforts contributed to the new knowledge it produced.
Large mass bolometers are used in particle physics experiments to search for rare processes, like neutrinoless double beta decay and dark matter interactions. In the next years the CUORE experiment (a 1 Ton detector composed by 1000 crystals of TeO2 operated as bolometers in a large cryostat at 10mK) will be the particle physics experiment with the highest chance of discovering the Majorana neutrino, a long standing and yet fundamental question of particle physics. The study presented in this book was performed on the bolometers of the CUORE experiment. The response function of these detectors is not linear in the energy range of interest, and it changes with the operating temperature, worsening the performances. The nonlinearity appeared to be dominated by the thermistor and the biasing circuit used to read the bolometer, and was modeled using few measurable parameters. A method to obtain a linear response is the result of this work. It allows a great improvement of the detector operation and data analysis. With a foreword by Fernando Ferroni.
In this book, the anomaly mediated supersymmetry breaking (AMSB) model is explored by searching for charged winos with their subsequent decays collected with the ATLAS detector at the Large Hadron Collider (LHC). The author develops a new method, called "re-tracking," to detect charged winos that decay before reaching the Semiconductor Tracker (SCT) detector. Because the nominal tracking algorithm at the ATLAS experiment requires at least seven successive hits in the inner tracking system, the sensitivity to charged winos having a fraction of a nanosecond in the past analysis was therefore limited. However, re-tracking requires a minimum of three pixel hits and provides a fully efficient tracking capability for charged winos traversing the pixel detector, resulting in around about 100 times greater efficiency for charged winos with a lifetime ~0.2 ns longer than that in past searches. Signal topology is characterized by a jet with large transverse momentum (pT), large missing transverse energy, and a high-pT disappearing track. There are three types of back ground tracks: interacting hadron tracks, charged leptons, and tracks with mismeasured pT. A background estimation based on the Monte Carlo (MC) simulation suffers from large uncertainties due to poor statistics and has difficulty simulating the properties of background tracks. Therefore, a data-driven approach has been developed by the author of the book to estimate the background track-pT spectrum. No significant excess above the background expectation is observed for candidate tracks with large transverse momentum, and constraints on the AMSB model are obtained. The author shows that in the AMSB model, a charged wino mass below 270 GeV is excluded at 95 % confidence level, which also directly constrains the mass of wino dark matter.
Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Sixth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.
This thesis reports on the first studies of Standard Model photon production at the Large Hadron Collider (LHC) using the ATLAS detector. Standard Model photon production is a large background in the search for Higgs bosons decaying into photon pairs, and is thus critical to understand. The thesis explains the techniques used to reconstruct and identify photon candidates using the ATLAS detector, and describes a measurement of the production cross section for isolated prompt photons. The thesis also describes a search for the Higgs boson in which the analysis techniques used in the measurement are exploited to reduce and estimate non-prompt backgrounds in diphoton events.
The book offers a thorough introduction to machine vision. It is organized in two parts. The first part covers the image acquisition, which is the crucial component of most automated visual inspection systems. All important methods are described in great detail and are presented with a reasoned structure. The second part deals with the modeling and processing of image signals and pays particular regard to methods, which are relevant for automated visual inspection.
The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The `complete' experiment is, until today, hardly to perform. Therefore, much attention is paid to the results of state-of-the-art experiments providing detailed information on the process, and their comparison to the related theoretical approaches, just to mention relativistic multi-configurational Dirac-Fock, convergent close-coupling, Breit-Pauli R-matrix, or relativistic distorted wave approaches, as well as Green's operator methods. This book has been written in honor of Herbert Walther and his major contribution to the field but even to stimulate advanced Bachelor and Master students by demonstrating that obviously nowadays atomic and molecular scattering physics yields and gives a much exciting appreciation for further advancing the field.
This thesis addresses in a very new and elegant way several measurements and the extraction of so-called double parton scattering. The new and elegant way lies in the combination of measurements and a very smart extraction of double parton scattering results, which is easy to apply and overcomes many of the technical difficulties of older methods. Many new phenomena in particle physics can be observed when particles are collided at the highest energies; one of the highlights in recent years was the discovery of the Higgs boson at the Large Hadron Collider at CERN. Understanding the production mechanism of the Higgs boson at the LHC requires detailed knowledge of the physics of proton-proton collisions. When the density of partons in the protons becomes large, there is a non-negligible probability that more than one parton participates in the interaction and the so-called double parton scattering becomes important. In some cases very particular final state signatures can be observed, which can be regarded as an indication of such double partonic scattering and where the different interactions can be separated. Such multiple partonic interactions play an important role when precise predictions from known processes are required.
This book reflects the outcome of the 1st International Workshop on Turbulent Spray Combustion held in 2009 in Corsica (France). The focus is on reporting the progress of experimental and numerical techniques in two-phase flows, with emphasis on spray combustion. The motivation for studies in this area is that knowledge of the dominant phenomena and their interactions in such flow systems is essential for the development of predictive models and their use in combustor and gas turbine design. This necessitates the development of accurate experimental methods and numerical modelling techniques. The workshop aimed at providing an opportunity for experts and young researchers to present the state-of-the-art, discuss new developments or techniques and exchange ideas in the areas of experimentations, modelling and simulation of reactive multiphase flows. The first two papers reflect the contents of the invited lectures, given by experts in the field of turbulent spray combustion. The first concerns computational issues, while the second deals with experiments. These lectures initiated very interesting and interactive discussions among the researchers, further pursued in contributed poster presentations. Contributions 3 and 4 focus on some aspects of the impact of the interaction between fuel evaporation and combustion on spray combustion in the context of gas turbines, while the final article deals with the interaction between evaporation and turbulence.
This book provides a comprehensive overview of the operating principles and technology of electron lenses in supercolliders. Electron lenses are a novel instrument for high energy particle accelerators, particularly for the energy-frontier superconducting hadron colliders, including the Tevatron, RHIC, LHC and future very large hadron colliders. After reviewing the issues surrounding beam dynamics in supercolliders, the book offers an introduction to the electron lens method and its application. Further chapters describe the technology behind the electron lenses which have recently been proposed, built and employed for compensation of beam-beam effects and for collimation of high-energy high-intensity beams, for compensation of space-charge effects and several other applications in accelerators. The book will be an invaluable resource for those involved in the design, construction and operation of the next generation of hadron colliders.
For the first time, the authors provide a comprehensive and consistent presentation of all techniques available in this field. They rigorously analyze the behavior of different electrochemical single and multipotential step techniques for electrodes of different geometries and sizes under transient and stationary conditions. The effects of these electrode features in studies of various electrochemical systems (solution systems, electroactive monolayers, and liquid-liquid interfaces) are discussed. Explicit analytical expressions for the current-potential responses are given for all available cases. Applications of each technique are outlined for the elucidation of reaction mechanisms. Coverage is comprehensive: normal pulse voltammetry, double differential pulse voltammetry, reverse pulse voltammetry and other triple and multipulse techniques, such as staircase voltammetry, differential staircase voltammetry, differential staircase voltcoulommetry, cyclic voltammetry, square wave voltammetry and square wave voltcoulommetry.
With his Ph.D. thesis, presented here in the format of a "Springer Theses", Paul Fulda won the 2012 GWIC thesis prize awarded by the Gravitational Wave International Committee. The impact of thermal noise on future gravitational wave detectors depends on the size and shape of the interrogating laser beam. It had been known since 2006 that, in theory, higher-order Laguerre-Gauss modes could reduce thermal noise. Paul Fulda's research brings Laguerre-Gauss modes an enormous step forward. His work includes analytical, numerical and experimental work on table-top setups as well as experiments at the Glasgow 10m prototype interferometer. Using numerical simulations the LG33 mode was selected as the optical mode to be tested. Further research by Paul and his colleagues since then concentrated on this mode. Paul has developed and demonstrated simple and effective methods to create this mode with diffractive optics and successfully demonstrated its compatibility with the essential building blocks of gravitational wave detectors, namely, optical cavities, Michelson interferometers and opto-electronic sensing and control systems. Through this work, Laguerre-Gauss modes for interferometers have been transformed from an essentially unknown entity to a well understood option with an experimental basis.
This book is written for scientists involved in the calibration of viscometers. A detailed description for stepping up procedures to establish the viscosity scale and obtaining sets of master viscometers is given in the book. Uncertainty considerations for standard oils of known viscosity are presented. The modern viscometers based on principles of tuning fork, ultrasonic, PZT, plate waves, Love waves, micro-cantilever and vibration of optical fiber are discussed to inspire the reader to further research and to generate improved versions. The primary standard for viscosity is pure water. Measurements of its viscosity with accuracy/uncertainty achieved are described. The principles of rotational and oscillation viscometers are explained to enhance the knowledge in calibration work. Devices used for specific materials and viscosity in non SI units are discussed with respect to the need to correlate viscosity values obtained by various devices. The description of commercial viscometers meets the needs of the user.
The book is a collection of peer-reviewed scientific papers submitted by active researchers in the 1st International Conference on Advancements of Medical Electronics (ICAME2015). The conference is organized jointly by the Department of Biomedical Engineering and Electronics and Communication Engineering, JIS College of Engineering, West Bengal, India. The primary objective of the conference is to strengthen interdisciplinary research and its applications for the welfare of humanity. A galaxy of academicians, professionals, scientists, statesman and researchers from different parts of the country and abroad got together and shared their knowledge. The book presents research articles of medical image processing & analysis, biomedical instrumentation & measurements, DSP & clinical applications, embedded systems & its applications in healthcare. The book can be referred as a tool for further research.
This book presents the theory of quantum effects used in metrology and results of the author’s own research in the field of quantum electronics. The book provides also quantum measurement standards used in many branches of metrology for electrical quantities, mass, length, time and frequency. This book represents the first comprehensive survey of quantum metrology problems. As a scientific survey, it propagates a new approach to metrology with more emphasis on its connection with physics. This is of importance for the constantly developing technologies and nanotechnologies in particular. Providing a presentation of practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a wide audience of physicists and metrologists in the broad sense of both terms. In 2014 a new system of units, the so called Quantum SI, is introduced. This book helps to understand and approve the new system to both technology and academic community.
This book is devoted to the analysis of measurement signals which requires specific mathematical operations like Convolution, Deconvolution, Laplace, Fourier, Hilbert, Wavelet or Z transform which are all presented in the present book. The different problems refer to the modulation of signals, filtration of disturbance as well as to the orthogonal signals and their use in digital form for the measurement of current, voltage, power and frequency are also widely discussed. All the topics covered in this book are presented in detail and illustrated by means of examples in MathCad and LabVIEW. This book provides a useful source for researchers, scientists and engineers who in their daily work are required to deal with problems of measurement and signal processing and can also be helpful to undergraduate students of electrical engineering.
This book presents a comprehensive review of the most important methods used in the characterisation of piezoelectric, ferroelectric and pyroelectric materials. It covers techniques for the analysis of bulk materials and thick and thin film materials and devices. There is a growing demand by industry to adapt and integrate piezoelectric materials into ever smaller devices and structures. Such applications development requires the joint development of reliable, robust, accurate and – most importantly – relevant and applicable measurement and characterisation methods and models. In the past few years there has been a rapid development of new techniques to model and measure the variety of properties that are deemed important for applications development engineers and scientists. The book has been written by the leaders in the field and many chapters represent established measurement best practice, with a strong emphasis on application of the methods via worked examples and detailed experimental procedural descriptions. Each chapter contains numerous diagrams, images, and measurement data, all of which are fully referenced and indexed. The book is intended to occupy space in the research or technical lab, and will be a valuable and practical resource for students, materials scientists, engineers, and lab technicians.
This thesis describes novel approaches and implementation of high-resolution microscopy in the extreme ultraviolet light regime. Using coherent ultrafast laser-generated short wavelength radiation for illuminating samples allows imaging beyond the resolution of visible-light microscopes. Michael Zürch gives a comprehensive overview of the fundamentals and techniques involved, starting from the laser-based frequency conversion scheme and its technical implementation as well as general considerations of diffraction-based imaging at nanoscopic spatial resolution. Experiments on digital in-line holography and coherent diffraction imaging of artificial and biologic specimens are demonstrated and discussed in this book. In the field of biologic imaging, a novel award-winning cell classification scheme and its first experimental application for identifying breast cancer cells are introduced. Finally, this book presents a newly developed technique of generating structured illumination by means of so-called optical vortex beams in the extreme ultraviolet regime and proposes its general usability for super-resolution imaging.
The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for any other researcher in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.
This book highlights the cutting-edge research on energy management within smart grids with significant deployment of Plug-in Electric Vehicles (PEV). These vehicles not only can be a significant electrical power consumer during Grid to Vehicle (G2V) charging mode, they can also be smartly utilized as a controlled source of electrical power when they are used in Vehicle to Grid (V2G) operating mode. Electricity Price, Time of Use Tariffs, Quality of Service, Social Welfare as well as electrical parameters of the network are all different criteria considered by the researchers when developing energy management techniques for PEVs. Risk averse stochastic energy hub management, maximizing profits in ancillary service markets, power market bidding strategies for fleets of PEVs, energy management of PEVs in the presence of renewable energy in distribution lines or microgrids and loss minimization in distribution networks based on smart coordination approaches using real time energy prices are some of the attractive and novel topics explored in this book. It will be an excellent reference for graduate students, researchers and industry professionals who are interested in getting a snapshot view of today's latest research on applying various smart energy management strategies for smart grids with high penetration of PEVs.
In this thesis, the measurement of double-spin asymmetry for electron production from heavy flavor decays was performed in a Relativistic Heavy Ion Collider (RHIC) in the PHENIX experiment at Brookhaven National Laboratory to measure the polarized parton distribution function of gluon in the small Bjorken x region (x~0.01). Â For this experiment, for the first time a Hadron Blind Detector (HBD), which is a position-sensitive gas Cherenkov counter with Gas Electron Multiplier whose surface is evaporated by CsI, was employed. This HBD contributes to reducing the background from electron pairs produced by real and virtual photon conversion. Furthermore, the author develops a new analysis method for the background reduction, and the signal-to-background ratio is improved by a factor of roughly 2.0. Using the combination of the HBD and a new analysis method, the double-spin asymmetry of the electron production with transverse momentum ranging 0.5 < pT < 3.0 GeV/c is measured and confirmed to be zero-consistent within the limit of the statistical uncertainty of about 1%. This result identifies the constraint of the gluon polarization in the small Bjorken x region, a worldwide first.
Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.
This book focuses on the state of the art in worldwide research on applying optimization approaches to intelligently control charging and discharging of batteries of Plug-in Electric Vehicles (PEVs) in smart grids. Network constraints, cost considerations, the number and penetration level of PEVs, utilization of PEVs by their owners, ancillary services, load forecasting, risk analysis, etc. are all different criteria considered by the researchers in developing mathematical based equations which represent the presence of PEVs in electric networks. Different objective functions can be defined and different optimization methods can be utilized to coordinate the performance of PEVs in smart grids. This book will be an excellent resource for anyone interested in grasping the current state of applying different optimization techniques and approaches that can manage the presence of PEVs in smart grids.
This book presents different aspects of renewable energy integration, from the latest developments in renewable energy technologies to the currently growing smart grids. The importance of different renewable energy sources is discussed, in order to identify the advantages and challenges for each technology. The rules of connecting the renewable energy sources have also been covered along with practical examples. Since solar and wind energy are the most popular forms of renewable energy sources, this book provides the challenges of integrating these renewable generators along with some innovative solutions. As the complexity of power system operation has been raised due to the renewable energy integration, this book also includes some analysis to investigate the characteristics of power systems in a smarter way. This book is intended for those working in the area of renewable energy integration in distribution networks. |
![]() ![]() You may like...
Handbook of Migration and Global Justice
Leanne Weber, Claudia Tazreiter
Hardcover
R5,825
Discovery Miles 58 250
|