![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Stress & fracture
Dynamic Deformation, Damage and Fracture in Composite Materials and Structures, Second Edition reviews various aspects of dynamic deformation, damage and fracture, mostly in composite laminates and sandwich structures, and in a broad range of application areas including aerospace, automotive, defense and sports engineering. This book examines low- and high-velocity loading and assesses shock, blast and penetrative events, and has been updated to cover important new developments such as the use of additive manufacturing to produce composites, including fiber-reinforced ones. New microstructural, experimental, theoretical, and numerical studies with advanced tools are included as well. The book also features four new chapters covering topics such as dynamic delamination, dynamic deformation and fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting.
This book, the second edition of the first monograph fully devoted to UV degradation and stabilization ever published in English, has 12 chapters discussing different aspects of UV related phenomena occurring when polymeric materials are exposed to UV radiation. In the introduction the existing literature has been reviewed to find out how plants, animals and humans protect themselves against UV radiation. This review permits evaluation of mechanisms of protection against UV used by living things and potential application of these mechanisms in protection of natural and synthetic polymeric materials. This is followed by chapters with a more detailed look at more specific aspects of UV degradation and stabilization.
The certification of the structural integrity of buildings, bridges, and mechanical components is one of the main goals of engineers. For civil engineers especially, understanding the tools available for infrastructure analysis is an essential part of designing, constructing, and maintaining safe and reliable structures. Fracture and Damage Mechanics for Structural Engineering of Frames: State-of-the-Art Industrial Applications outlines the latest computational tools, models, and methodologies surrounding the analysis of wall and frame load support and resilience. Emphasizing best practices in computational simulation for civil engineering applications, this reference work is invaluable to postgraduate students, academicians, and engineers in the field.
High Temperature Mechanical Behavior of Ceramic Composites provides
an up-to-date comprehensive coverage of the mechanical behavior of
ceramic matrix composites at elevated temperatures. Topics include
both short-term behavior (strength, fracture toughness and R-curve
behavior) and long-term behavior (creep, creep-fatigue, delayed
failure and lifetime). Emphasis is on a review of fundamentals and
on the mechanics and mechanisms underlying properties.
The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing.
The book presents the work of the RILEM Technical Committee 261-CCF, which organized the challenging International Round Robin Test (RRT) on the creep behaviour of Fibre Reinforce Concrete (FRC) cracked specimens. Although different creep test methodologies have been developed in recent years, the absence of a standardised creep methodology hindered general comparisons. Therefore, the RILEM TC 261-CCF launched an ambitious international RRT program to improve the knowledge on long-term behaviour of cracked sections of FRC and assess all the different testing methodologies, assuming the big variability of testing criteria among the scientific community. The participation of 19 laboratories across 20 institutions in 14 countries all over the world enabled the realisation of the largest experimental campaign on creep in the cracked state. As a result of the RRT, an extensive database of creep test results was created containing comprehensive information from 124 cracked FRC specimens tested using different creep testing procedures in agreed conditions. The book will benefit academics and practitioners interested in the long-term behaviour of FRC since it served as basis for the recently published RILEM Recommendation on creep testing procedure and represents the current knowledge on creep in cracked FRC specimens.
This text records the Proceedings of the IUTAM Symposium held in Cambridge in 1995. It contains 35 articles by leading authorities and addresses the modelling of fracture from a variety of perspectives, ranging over mechanics, material science, physics, geophysics, and nonlinear dynamics. The most important single practical question addressed is that of scale. This is considered in relation to nonlinear material behaviour, micromechanics and statistical variations, and the interaction of these aspects. Certain aspects of the subject have experienced significant advance, from one or other of the standpoints of physics, materials science or mechanics. This book is intended to contribute towards the wider dissemination of these advances and the development of a unified perspective. It will be useful to those active in research in fracture who wish to gain an overview of the subject, taking advantage of insights gained from the whole range of this expertise.
This textbook consists primarily of notes by Iain Finnie who taught a popular course on fracture mechanics at the University of California at Berkeley. It presents a comprehensive and detailed exposition of fracture, the fundamentals of fracture mechanics and procedures for the safe design of engineering components made from metal alloys, brittle materials like glasses and ceramics, and composites. Interesting and practical problems are listed at the end of most chapters to give the student practice in applying the theory. A solutions manual is provided to the instructor. The text presents a unified perspective of fracture with a strong fundamental foundation and practical applications. In addition to its role as a text, this reference would be invaluable for the practicing engineer who is involved in the design and evaluation of components that are fracture critical. This book also: Presents details of derivations of the basic equations of fracture mechanics and the historical context of the development of fracture theory and methodology Treats linear and nonlinear fracture mechanics methodologies beginning with a review of the basic equations of solid mechanics followed by solutions useful in fracture prediction Illustrates the basis of linear elastic fracture mechanics (LEFM), practical applications of LEFM in the design of fracture-tolerant structural components Offers interesting, practical, classroom proven problems at the end of most chapters Includes instructor's solutions manual
The field of stress analysis has gained its momentum from the widespread applications in industry and technology and has now become an important part of materials science. Various destructive as well as nondestructive methods have been developed for the determination of stresses. This timely book provides a comprehensive review of the nondestructive techniques for strain evaluation written by experts in their respective fields. The main part of the book deals with X-ray stress analysis (XSA), focussing on measurement and evaluation methods which can help to solve the problems of today, the numerous applications of metallic, polymeric and ceramic materials as well as of thin-film-substrate composites and of advanced microcomponents. Furthermore it contains data, results, hints and recommendations that are valuable to laboratories for the certification and accreditation of their stress analysis. Stress analysis is an active field in which many questions remain unsettled. Accordingly, unsolved problems and conflicting results are discussed as well. The assessment of the experimentally determined residual and structural stress states on the static and dynamic behavior of materials and components is handled in a separate chapter. Students and engineers of materials science and scientists working in laboratories and industries will find this book invaluable.
This book provides background and guidance on the use of the structural hot-spot stress approach to fatigue analysis. The book also offers Design S-N curves for use with the structural hot-spot stress for a range of weld details, and presents parametric formulas for calculating stress increases due to misalignment and structural discontinuities. Highlighting the extension to structures fabricated from plates and non-tubular sections. The structural hot-spot stress approach focuses on cases of potential fatigue cracking from the weld toe and it has been in use for many years in tubular joints. Following an explanation of the structural hot-spot stress, its definition and its relevance to fatigue, the book describes methods for its determination. It considers stress determination from both finite element analysis and strain gauge measurements, and emphasizes the use of finite element stress analysis, providing guidance on the choice of element type and size for use with either solid or shell elements. Lastly, it illustrates the use of the recommendations in four case studies involving the fatigue assessment of welded structures using the structural hot-spot stress
This book summarizes the main methods of experimental stress analysis and examines their application to various states of stress of major technical interest, highlighting aspects not always covered in the classic literature. It is explained how experimental stress analysis assists in the verification and completion of analytical and numerical models, the development of phenomenological theories, the measurement and control of system parameters under operating conditions, and identification of causes of failure or malfunction. Cases addressed include measurement of the state of stress in models, measurement of actual loads on structures, verification of stress states in circumstances of complex numerical modeling, assessment of stress-related material damage, and reliability analysis of artifacts (e.g. prostheses) that interact with biological systems. The book will serve graduate students and professionals as a valuable tool for finding solutions when analytical solutions do not exist.
This book presents the proceedings of one of the major conferences in fatigue, fracture and structural integrity (NT2F). The papers are organized and divided in five different themes: fatigue and fracture mechanics of structures and advanced materials; fatigue and fracture in pressure vessels and pipelines: mechanical behavior and structural integrity of welded, bonded and bolted joints; residual stress and environmental effects on the fatigue behavior; and simulation methods, analytical and computation models in fatigue and fracture.
"Fracture Mechanics of Piezoelectric and Ferroelectric Solids" presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.
Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge.
The book describes a systematic stochastic modeling approach for assessing thermal-fatigue crack-growth in mixing tees, based on the power spectral density of temperature fluctuation at the inner pipe surface. It shows the development of a frequency-temperature response function in the framework of single-input, single-output (SISO) methodology from random noise/signal theory under sinusoidal input. The frequency response of stress intensity factor (SIF) is obtained by a polynomial fitting procedure of thermal stress profiles at various instants of time. The method, which takes into account the variability of material properties, and has been implemented in a real-world application, estimates the probabilities of failure by considering a limit state function and Monte Carlo analysis, which are based on the proposed stochastic model. Written in a comprehensive and accessible style, this book presents a new and effective method for assessing thermal fatigue crack, and it is intended as a concise and practice-oriented guide for all undergraduate students, young scientists and researchers dealing with probabilistic assessment of structural integrity.
This book presents fractography and failure analysis at a level that is accessible for non-expert readers, without losing scientific rigor. It offers a comprehensive description of fracture surfaces in engineering materials, with an emphasis on metals, and of the methodology for the observation of fracture surfaces. It also discusses in detail the main fracture mechanisms and their corresponding fracture surfaces, including brittle, ductile, fatigue, and environmental fractures. The last chapter is dedicated to the use of fractography in determining of the causes component failure. In modern engineering, the analysis of fractured components is a common practice in many fields, such as integrity management systems, materials science research, and failure investigations. As such this book is useful for engineers, scientists, engineering students, loss adjuster surveyors and any professional dealing with fractured components.
This book is based on 40 years of research and teaching in the fields of fracture mechanics and plasticity. It will bring students and engineers from various disciplines up to date on key concepts that have become increasingly important in the design of safety-relevant engineering structures in general and in modern lightweight structures in the transportation industry in particular. Primarily intended for graduate students in the engineering sciences and practicing structural engineers, it employs a multidisciplinary approach that comprises theoretical concepts, numerical methods, and experimental techniques. In addition, it includes a wealth of analytical and numerical examples, used to illustrate the applications of the concepts discussed.
Dynamic fracture in solids has attracted much attention for over a
century from engineers as well as physicists due both to its
technological interest and to inherent scientific curiosity.
Rapidly applied loads are encountered in a number of technical
applications. In some cases such loads might be applied
deliberately, as for example in problems of blasting, mining, and
comminution or fragmentation; in other cases, such dynamic loads
might arise from accidental conditions. Regardless of the origin of
the rapid loading, it is necessary to understand the mechanisms and
mechanics of fracture under dynamic loading conditions in order to
design suitable procedures for assessing the susceptibility to
fracture. Quite apart from its repercussions in the area of
structural integrity, fundamental scientific curiosity has
continued to play a large role in engendering interest in dynamic
fracture problems
Joining techniques in engineering are of major importance. Innovations in the field of composites now allows design of nanomaterials with tailored properties. This book adresses techniques for similar and dissimilar joining, characterization of joint structures and damage prediction by simulation. A special focus is laid on welding of lightweight structures, which are of special economic interest for aeronautical and automotive applications.
This book provides practicing engineers, researchers, and students, with a working knowledge of the fatigue damage processes and models under multiaxial state of stress and strain. Readers are introduced to the important considerations of multiaxial fatigue that differentiate it from uniaxial fatigue. Multiaxial Fatigue presents an interpretive summary and comparison of various classes of models, providing a complete treatment of the subject from many perspectives. The concepts presented in this book are material independent and will be useful in designing test programs for metallic, ceramic, composite, and other materials. The book is filled with examples, case studies, and diagrams to make it a useful learning tool as well as a valuable desk reference. Contents include: State of Stress and Strain Stress-Strain Relationships Fatigue Damage Mechanisms Multiaxial Testing Nonproportional Loading Notches Strain-Based and Energy-Based Models Stress-Based Models Fracture Mechanics Model Applications.
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
Five laboratories from France, Hungary and the Czech Republic have solved a Project supported fmancially by NATO within the Science for Peace Program (under Nr. 972655) for three years. The project, titled Fracture ResistanceofSteelsfor Containers of Spent Nuclear Fuel, was focused (i) on the generation of data needed for the qualification procedure of a new container introduced by Skoda Nuclear Machinery and (ii) on a number of topics of scientific nature associated with the interesting field of transferability of fracture mechanical data-, It has been found during numerous conference presentations of project results that the knowledge developed within the project would be more attractive when published in a more comprehensive form. This was the reason why the final project workshop was arranged as a meeting of project collaborators and contributing invited experts working in very similar field. The main scope of the final project workshop, titled Transferability of Fracture Mechanical Data and held in Brno from 5 to 6 November 200I, was to bring together project collaborators with a number of invited international experts, both covering the spectrum of topics solved within the project and reviewing the project results in the presence ofthese specialists. A totalof34 colleagues from 7 European countries and the USA participated in the workshop.
This wide-ranging survey of the physical aspects of fracture shows that the old barriers between different scales will soon themselves fracture. It is no longer unrealistic to imagine that a crack initiated through a molecular dynamics description could be propagated at the grain level thanks to dislocation dynamics included in a crystal plasticity model, itself implemented in a finite element code. Linking what happens at the atomic scale to fracture of structures as large as a dam is the new emerging challenge. The volume includes papers on most materials of practical interest from concrete to ceramics through metallic alloys, glasses, polymers and composite materials. The classical fields of fracture mechanisms are addressed. Brittle and ductile fractures are considered. The text is carefully balanced between experiments, simulations and theoretical models, and between the contributions by the various communities. New topics of damage and fracture mechanics are also explored, such as the effect of disorder and statistical aspects, dynamic fracture, friction and fracture of interfaces.
Lead-free solders are used extensively as interconnection materials in electronic assemblies and play a critical role in the global semiconductor packaging and electronics manufacturing industry. Electronic products such as smart phones, notebooks and high performance computers rely on lead-free solder joints to connect IC chip components to printed circuit boards." Lead Free Solder: Mechanics and Reliability" provides in-depth design knowledge on lead-free solder elastic-plastic-creep and strain-rate dependent deformation behavior and its application in failure assessment of solder joint reliability. It includes coverage of advanced mechanics of materials theory and experiments, mechanical properties of solder and solder joint specimens, constitutive models for solder deformation behavior; numerical modeling and simulation of solder joint failure subject to thermal cycling, mechanical bending fatigue, vibration fatigue and board-level drop impact tests.
The First African InterQuadrennial ICF Conference "AIQ-ICF2008" on Damage and Fracture Mechanics - Failure Analysis of Engineering Materials and Structures," Algiers, Algeria, June 1-5, 2008 is the first in the series of InterQuadrennial Conferences on Fracture to be held in the continent of Africa. During the conference, African researchers have shown that they merit a strong reputation in international circles and continue to make substantial contributions to the field of fracture mechanics. As in most countries, the research effort in Africa is und- taken at the industrial, academic, private sector and governmental levels, and covers the whole spectrum of fracture and fatigue. The AIQ-ICF2008 has brought together researchers and engineers to review and discuss advances in the development of methods and approaches on Damage and Fracture Mechanics. By bringing together the leading international experts in the field, AIQ-ICF promotes technology transfer and provides a forum for industry and researchers of the host nation to present their accomplishments and to develop new ideas at the highest level. International Conferences have an important role to play in the technology transfer process, especially in terms of the relationships to be established between the participants and the informal exchange of ideas that this ICF offers. |
![]() ![]() You may like...
Mesoscopic Dynamics of Fracture…
Hiroshi Kitagawa, Tomoyasu Jr. Aihara, …
Hardcover
R3,024
Discovery Miles 30 240
Fatigue and Fracture Mechanics of High…
Bahram Farahmand, George Bockrath, …
Hardcover
R4,485
Discovery Miles 44 850
IUTAM Symposium on Scaling Laws in Ice…
J.P. Dempsey, H.H. Shen
Hardcover
R8,387
Discovery Miles 83 870
Spectral Finite Element Method - Wave…
Srinivasan Gopalakrishnan, Abir Chakraborty, …
Hardcover
R4,424
Discovery Miles 44 240
Cracking Phenomena in Welds IV
Thomas Boellinghaus, John Lippold, …
Hardcover
R6,025
Discovery Miles 60 250
Thermo-Hydro-Mechanical-Chemical…
Olaf Kolditz, Thomas Nagel, …
Hardcover
R3,503
Discovery Miles 35 030
Multiaxial Fatigue and Fracture, Volume…
E. Macha, W. Bedkowski, …
Hardcover
R4,987
Discovery Miles 49 870
|