![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Stress & fracture
Thematerialsusedinmanufacturingtheaerospace, aircraft, automobile, andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable mann
These proceedings gather a selection of peer-reviewed papers presented at the 7th International Conference on Fracture Fatigue and Wear (FFW 2018), held at Ghent University, Belgium on 9-10 July 2018. The contributions, prepared by international scientists and engineers, cover the latest advances in and innovative applications of fracture mechanics, fatigue of materials, tribology and wear of materials. The book is intended for academics, including graduate students and researchers, as well as industrial practitioners working in the areas of fracture fatigue and wear.
This book consists of a collection of lectures prepared for a short course on "Fracture Mechanics Methodology" sponsored by the Advisory Group for Aerospace Research and Development (AGARD), part of the North Atlantic Treaty Organization (NATO). The course was organized jointly by Professor George C. Sih of the Institute of Fracture and Solid Mechanics at Lehigh University in the United States and Professor Luciano Faria from Centro de Mecanica e de Materiais das Universidade de Lisboa in Portugal. It was held in Lisbon from June 1 to 4, 1981. Dr. Robert Badaliance from the McDonnell Aircraft Company in St. Louis and Dr. Oscar Orringer from the Depart ment of Transportation in Cambridge are the other US lecturers while Professor Carlos Moura Branco from Portugal also lectured. The audience consisted of engineers from the Portuguese industry with a large portion from the aeronautical sector and others who are particularly interested to apply the fracture mechanics discipline for analyzing the integrity of structural components and fracture control methods. Particular. emphases were given to the fundamentals of fracture mechanics as applied to aircraft structures."
Fatigue and Fracture Reliability Engineering is an attempt to present an integrated and unified approach to reliability determination of fatigue and fracture behaviour, incorporating probability, statistics and other related areas. A series of original and practical approaches, are suggested in Fatigue and Fracture Reliability Engineering, including new techniques in determining fatigue and fracture performances. It also carries out an investigation into static and fatigue properties, and into the failure mechanisms of unnotched and notched CFR composite laminates with different lay-ups to optimize the stacking sequence effect. Further benefits include: a novel convergence-divergence counting procedure to extract all load cycles from a load history of divergence-convergence waves; practical scatter factor formulae to determine the safe fatigue crack initiation and propagation lives from the results of a single full-scale test of a complete structure; and a nonlinear differential kinetic model for describing the dynamical behaviour of an atom at a fatigue crack tip. Fatigue and Fracture Reliability Engineering is intended for practising engineers in marine, civil construction, aerospace, offshore, automotive and chemical industries. It is also useful reading for researchers on doctoral programmes, and is appropriate for advanced undergraduate and postgraduate programmes in any mechanically-oriented engineering discipline.
This proceedings contains contributions to the series of seminars held in Vienna (1992), Miskolc, Hungary (1993 and 1994) and Vienna (1995) and provides a valuable resource for those concerned with the teaching of fracture and fatigue. It presents a wide range of approaches relevant to course and curriculum development. It is aimed particularly at those concerned with graduate and post-graduate education. This book should be of interest to lecturers and researchers in the field of mechanics of materials, especially related to mechanical and structural engineering.
Invited international contributions to this exciting new research field are included in this volume. It contains the specially selected papers from 45 key specialists given at the Symposium held under the auspices of the prestigious International Union of Theoretical and Applied Mechanics at Turin in October 1994.
This book deals with the new developments and application of the geometric method to the nonlinear stability problem for thin non-elastic shells. A.V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicityly the asymptotic formulas for the upper and lower critical loads. The geometric method by Pogorelov is one of the most importanty analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the post critical form of a deformed shell surface, successfully applied to a direct variational approach to the nonlinear shell stability problems. Until now, most of Pogorelov's monographs were written in Russian, which limited the diffusion of his ideas among the international scientific community. The present book is intended to assist and encourage the researchers in this field to apply the geometric method and the related results to everyday engineering practice. Further developments of the geometric method are carried out in this book and are directed to stability of thin shells in the case of elastic anisotropy, elastic anisotropy with linear memory and elasto-plastic properties of the shell material. This book is intended to serve both as a textbook for post-graduate students in structural engineering and applied mathematics, and as a revference monograph for academic and industrial researchers.
Derived from the invited IUTAM Symposium in September 1993, this volume's contributions discuss recent advances in fracture mechanics, studies of concrete, rock, ceramics and other brittle disordered materials at micro and structural levels. It draws together research and new applications in continuum, damage and fracture mechanics approaches.
With the advent of the 80's there has been an increasing need for analytic and numerical techniques, based on a thorough understanding of microstructural processes, that express in a manner suitable for practicing engineers the reliability of components and structures that are being subjected to degradation situations. Such situations fall within the framework offracture mechanics, fatigue, corrosion fatigue and pitting corrosion. Luckily, such techniques are now being developed and it was felt timely to combine in one volume reports by the leaders in this field who are currently making great strides towards solving these problems. Hence the idea of this monograph was born and I am pleased to be associated both with it and the contributors whose chapters are included in this volume. A very large part of the credit for this monograph must go to the authors who have taken time out from their busy schedules to prepare their submissions. They have all worked diligently over the last few months in order to get their manuscripts to me on time and I sincerely thank them for their help throughout the preparation of this volume.
This text presents the most recent research on fracture and damage of concrete and rock. It provides an improved understanding of the basic physical and mechanical principles of fracture mechanics in these materials with a strong view towards applications in construction engineering and mining engineering. It forms the proceedings of the international conference held in Vienna in November 1992. The background to the book comes from three main areas: fatigue and ageing of complex concrete structures have been responsible both for loss of life and for expenditure running into billions of dollars in recent decades; lack of virgin building land and high property values in cities and urban areas have led to more demolition and recycling of concrete structures, and related environmental problems; and more engineering structures are being built on and in rock mass of low quality and difficult terrain. Rock fracture mechanics has matured to a fully recognized discipline and is now being applied to problems of excavation, tunnelling, blasting and anchoring. FDCR Conferences provide a forum for international, interdisciplinary co-operation and exchange of ideas and experience between scienti
This volume is a collection of the papers given at the workshop on Fracture Scaling, held at the University of Maryland, USA, 10-12 June 1999, under the sponsorship of the Office of Naval Research, Arlington, VA, USA. These papers can be grouped under five major themes: Micromechanical analysis Size effects in fiber composites Scaling and heterogeneity Computational aspects and nonlocal or gradient models Size effects in concrete, ice and soils . This workshop is the result of a significant research effort, supported by the Office of Naval Research, into the problems of scaling of fracture in fiber composites, and generally into the problems of scaling in solid mechanics. These problems, which are of interest for many materials, especially all quasibrittle materials, share similar characteristics. Thus, progress in the understanding of scaling problems for one material may help progress for another material. This makes it clear that a dialogue between researchers in various fields of mechanics is highly desirable and should be promoted. In view of this, this volume should be of interest to researchers and advanced graduate students in materials science, solid mechanics and civil engineering.
Following Volumes III and IV that dealt with the fracture mechanics of concrete emphasizing both material testing and structural application in general, it was felt that specimen size and loading rate effects for concrete require further attention. The only criterion that has thus far successfully linearized the highly nonlinear crack growth data of concrete is the strain energy density theory. In particular, the crack growth resistance curves plotting the strain energy density factor versus crack growth known as the SR.curves are straight lines as specimen size and loading steps or rates are altered. This allows the extrapolation of data and provides a useful design methodology. This book is unique in that it is devoted specifically to the application of the strain energy density theory to civil engineering structural members made of concrete. Analyzed in detail is the strain softening behavior of concrete for a variety of different components including the influence of steel reinforcement. Permanent damage of the material is accounted for each increment of loading by invoking the mechanism of elastic unloading. This assumption is justified in concrete structures where the effective stiffness depends primarily on the crack growth rate and load history. Crack growth data are presented in terms of SR-curves with emphases placed on scaling specimen size which alone can change the mode of failure from plastic collapse to brittle fracture. Loading rate effects can also be scaled to control failure by yielding and fracture."
This volume emphazises the most early 1990s advances in fracture mechanics as specifically applied to steel bar reinforced concrete. Fracture mechanics has been applied to plain and fibre reinforced concrete with increasing success over recent years. This workshop extended these concepts to steel bar reinforced and pre-stressed concrete design. Particularly for high strength concrete, which is a very brittle material, and in the case of large structural members, the application of fracture mechanics appears to be very useful for improving the present design rules. The participants at the Turin workshop contributed expert opinions in four selected areas for which a rational approach, using fracture mechanics, could introduce variations into the concrete design codes: size effects; anchorage and bond; minimum reinforcement for elements in flexure; and shear resistance. The 23 chapters logically address these themes and demonstrate the unique ability of fracture mechanics to capture all the experimentally observed characteristics.
This work reviews methods for the experimental determination of concrete toughness and presents theories and models suitable for describing cracking and fracturing phenomena in plain and reinforced concrete. Test methods based on classsical linear fracture mechanics cannot be applied to laboratory sized concrete specimens. The book compares the currently used methods and presents recommended test procedures for mode I fracture/toughness using notched beam and other specimens. Crack propagation under mixed-mode loading (Mode II) is discussed and current test methods are extensively reviewed. Effects of loading rate, temperature and humidity effects are treated in a separate chapter. The book concludes with descriptions and recommendations of techniques for detecting the fracture process zone in concrete, in particular, pulse velocity and laser interferometry techniques. The introduction of the concepts of fracture toughness and fracture energy into structural concrete design codes means that the experimental determination of fracture porperties is ceasing to be an academic exercise and is becoming a technical need. This book has been prepared by RILEM Technical committee 89-FMT and
This volume sets out to present recent research findings on the applications of fracture mechanics to concrete structures. Papers from international contributors describe existing and new modelling techniques in the analysis of concrete materials and structures. Topics discussed include structural modelling, bending, shear, bond and anchorage. The book forms the proceedings of a RILEM workshop held in Sweden in 1989. It is dedicated to Professor Arne Hillerborg, whose contribution to fracture mechanics is also reviewed.
Micro Electro Mechanical Systems (MEMS) is already about a billion dollars a year industry and is growing rapidly. So far major emphasis has been placed on the fabrication processes for various devices. There are serious issues related to tribology, mechanics, surfacechemistry and materials science in the operationand manufacturingof many MEMS devices and these issues are preventing an even faster commercialization. Very little is understood about tribology and mechanical properties on micro- to nanoscales of the materials used in the construction of MEMS devices. The MEMS community needs to be exposed to the state-of-the-artoftribology and vice versa. Fundamental understanding of friction/stiction, wear and the role of surface contamination and environmental debris in micro devices is required. There are significantadhesion, friction and wear issues in manufacturing and actual use, facing the MEMS industry. Very little is understood about the tribology of bulk silicon and polysilicon films used in the construction ofthese microdevices. These issues are based on surface phenomenaand cannotbe scaled down linearly and these become increasingly important with the small size of the devices. Continuum theory breaks down in the analyses, e. g. in fluid flow of micro-scale devices. Mechanical properties ofpolysilicon and other films are not well characterized. Roughness optimization can help in tribological improvements. Monolayers of lubricants and other materials need to be developed for ultra-low friction and near zero wear. Hard coatings and ion implantation techniques hold promise.
This is the first complete overview of the present state of the art of flexible barrier materials such as textile, paper and leather, including methods for barrier evaluation. It will be of interest to readers in industries, consumers, and members of the scientific community. The scope of the field is clearly delineated here for the first time, and it deals with a number of specific topics such as barrier to fire and antibacterial properties.
Within the Solid Mechanics Program at the Office of Naval Research (ONR), our primary mission is to establish a basic research program which addresses the funda mental issues in solid mechanics where a clear scientific understanding is lacking. Our approach involves first identifying the various scales at which material and structural response and failure occur. Within each level of behavior we address the basic mechanical phenomena for which a clear physical description is not available. ONR's program emphasizes experimental research to identify and quantify the interacting behavior and response mechanisms. Theoretical and computational approaches are developed to explain the details of the physical processes and to establish the technology necessary to control the thermomechanical behavior of materials and structures. Within the Department of Defense, it is a natural evolution that all new systems must generally operate in more demanding environments than the systems they replace. Thus, structural designers are pushed towards lighter weight, precision structures utilizing new materials. In such an environment, structural design mar gins simultaneously shrink and become more critical. Such trends make it essential that a well founded scientific base for the nondestructive detection and assessment of subcritical flaws in structural materials and structures exist. Within the ONR Solid Mechanics Program we are interested in both the identification of flaws and assessment of their degree of criticality."
Modern Solid Mechanics considers phenomena at many levels, ranging from nano size at atomic scale through the continuum level at millimeter size to large structures at the tens of meter scale. The deformation and fracture behavior at these various scales are inextricably related to interdisciplinary methods derived from applied mathematics, physics, chemistry, and engineering mechanics. This book, in honor of James R. Rice, contains articles from his colleagues and former students that bring these sophisticated methods to bear on a wide range of problems. Articles discussing problems of deformation include topics of dislocation mechanics, second particle effects, plastic yield criterion on porous materials, hydrogen embrittlement, solid state sintering, nanophases at surfaces, adhesion and contact mechanics, diffuse instability in geomaterials, and percolation in metal deformation. In the fracture area, the topics include: elastic-plastic crack growth, dynamic fracture, stress intensity and J-integral analysis, stress-corrosion cracking, and fracture in single crystal, piezoelectric, composite and cementitious materials. The book will be a valuable resource for researchers in modern solid mechanics and can be used as reference or supplementary text in mechanical and civil engineering, applied mechanics, materials science, and engineering graduate courses on fracture mechanics, elasticity, plasticity, mechanics of materials or the application of solid mechanics to processing, and reliability of life predictions.
This book contains an elastic-plastic analysis of accumulate damage and fracture with practical applications with engineering materials and structure fatigue life estimations. Models as well as practical applications are presented, which makes the book interesting for both practitioners and theoretical researchers. Particular emphasis is laid on new approaches to the mixed-mode problem in fatigue and fracture, and especially to the fracture damage zone (FDZ) approach. The results of the demonstrated experimental and theoretical research lead to the presentation of different crack growth models, predicting the crack growth rate and, fatigue life of an initially angled crack under biaxial loads of arbitrary direction. Special attention is paid to the practical applications of the suggested models.
Intended for engineers, researchers, and graduate students dealing with materials science, structural design, and nondestructive testing and evaluation, this book represents a continuation of the author's "Fracture Mechanics" (1997). It will appeal to a variety of audiences: The discussion of design codes and procedures will be of use to practicing engineers, particularly in the nuclear, aerospace, and pipeline industries; the extensive bibliography and discussion of recent results will make it a useful reference for academic researchers; and graduate students will find the clear explanations and worked examples useful for learning the field. The book begins with a general treatment of fracture mechanics in terms of material properties and loading and provides up-to-date reviews of the ductile-britttle transition in steels and of methods for analyzing the risk of fracture. It then discusses the dynamics of fracture and creep in homogeneous and isotropic media, including discussions of high-loading-rate characteristics, the behavior of stationary cracks in elastic media under stress, and the propagation of cracks in elastic media. This is followed by an analysis of creep and crack initiation and propagation, describing, for example, the morphology and incubation times of crack initiation and growth and the effects of high temperatures. The book concludes with treatments of cycling deformation and fatigue, creep-fatigue fractures, and crack initiation and propagation. Problems at the end of each chapter serve to reinforce and test the student's knowledge and to extend some of the discussions in the text. Solutions to half of the problems are provided.
The studies on the phenomena of fatigue in metals, and especially on the formation and growth rate of cracks have been conducted in 1972-1974 with continued intensity. Their results contribute to expanding our knowledge and give us a new insight into the sphere of metal fatigue which is a highly interdiscipline field. This makes the continuous amending and modifying of books on metal fatigue a necessity, unfortunately often related with the not easy task of changing one's opinions and critical analysis of established earlier notions. These aims were my chief concern when preparing the present edition of my book in which I made use of carefully selected new information from 1972-1973 and partly 1974 reports. This new matter has been included in many instances just to signal new facts or findings, since the limited space did not allow me to give them the amount of consideration they deserve. The book has been further supplemented with the results of micrographic studies conducted in co-operation with J. Kozubowski for which lowe him special thanks. I am also indebted to Mr. H. Mughrabi from Stuttgart for allowing me to publish in this book his very interesting micrographs of dislocation structures. Finally I should like to express my sincere thanks to Mr. E. Lepa for his concern in producing a good English translation of my book.
This book is based on the analogy between contact mechanics and fracture mechanics as proposed by the author about twenty years ago. It starts with a chapter devoted to the surface energy and tension of solids and surface thermodynamics, which is followed by a chapter on elastic recall. The methods of Muskhelichvili and Hankel transforms for the resolution of plane and axisymmetric problems are studied. Then the essential conepts of fracture mechanics are presented with emphasis on the thermodynamic aspect of the problem. The reader will find complete analytical results and detailed calculations for cracks submitted to pressure distributions and the Dugdale model, as well as a chapter on contact mechanics. The contact and adherence of rough solids is also studied. This book is intended for advanced students and researchers working in the fields of fracture mechanics or adhesion. |
![]() ![]() You may like...
Factorizations of Almost Simple Groups…
Cai-Heng Li, Binzhou Xia
Paperback
R2,300
Discovery Miles 23 000
Mid-Career Library and Information…
Dawn Lowe-Wincentsen, Linda Crook
Paperback
R1,491
Discovery Miles 14 910
Food and Medicine - A Biosemiotic…
Yogi Hale Hendlin, Jonathan Hope
Hardcover
R3,891
Discovery Miles 38 910
Stochastic and Statistical Methods in…
Keith W. Hipel, Liping Fang
Hardcover
R5,858
Discovery Miles 58 580
Digital Libraries - Integrating Content…
Mark V Dahl, Kyle Banerjee, …
Paperback
R1,218
Discovery Miles 12 180
|