![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering
The preservation of heritage architecture is a cultural objective rigorously pursued by communities and nations wishing to promote their history, civilisation and aesthetic achievements. Structures built in the remote past by traditional methods have suffered the consequences of extreme loading events, such as earthquakes, over long time periods. Retrofitting is an approach based on recent technological developments and scientific knowledge, whereby modern construction methods and materials are applied to the repair and strengthening of historical structures. This book aims to inform on current retrofitting techniques, their application to various types of historical architecture and their effectiveness to fulfil their purpose. Retrofitted structural forms covered in the book vary widely from age old places of worship, such as churches, mosques and temples, as well as castles and palaces to more modern, distinguished private residences or public buildings, some of them designed by well known architects. Their methods of construction range from traditional, such as stone or brick masonry to more recent textile block systems and even reinforced concrete frameworks.Reference is made to detailed visual inspections of damaged structure providing valuable insight into possible causes of failure; such inspections are usually combined with material characterisation which is an essential input to numerical modelling for assessing the behaviour of the structure before and after retrofitting. The book describes strengthening techniques for masonry walls including re-pointing, injection grouting and the use of steel ties. The use of reinforced concrete is proposed in the form of cast-in-place walls, jackets or tie-beams; that of carbon fibre reinforced laminates for strengthening walls and slabs. Innovative use of materials, such as shape memory alloys, self-compacting concrete or thin lead layers is also suggested. Particular attention is given to methods for moderating the consequences of destructive earthquakes. Seismic energy absorbing devices and base isolation systems are two effective means of providing protection against future seismic events although their application is often met with many technical challenges in practice.Retrofitting of Heritage Structures: Design and evaluation of strengthening techniques will be of interest to members of academic institutions, government or private cultural preservation establishments and specialist consultant engineers. The book contains very practical, technical advice on many issues; this would be of considerable interest to construction companies specialising in repairs and maintenance of historical structures.
The book provides suggestions on how to start using bionic optimization methods, including pseudo-code examples of each of the important approaches and outlines of how to improve them. The most efficient methods for accelerating the studies are discussed. These include the selection of size and generations of a study's parameters, modification of these driving parameters, switching to gradient methods when approaching local maxima, and the use of parallel working hardware. Bionic Optimization means finding the best solution to a problem using methods found in nature. As Evolutionary Strategies and Particle Swarm Optimization seem to be the most important methods for structural optimization, we primarily focus on them. Other methods such as neural nets or ant colonies are more suited to control or process studies, so their basic ideas are outlined in order to motivate readers to start using them. A set of sample applications shows how Bionic Optimization works in practice. From academic studies on simple frames made of rods to earthquake-resistant buildings, readers follow the lessons learned, difficulties encountered and effective strategies for overcoming them. For the problem of tuned mass dampers, which play an important role in dynamic control, changing the goal and restrictions paves the way for Multi-Objective-Optimization. As most structural designers today use commercial software such as FE-Codes or CAE systems with integrated simulation modules, ways of integrating Bionic Optimization into these software packages are outlined and examples of typical systems and typical optimization approaches are presented. The closing section focuses on an overview and outlook on reliable and robust as well as on Multi-Objective-Optimization, including discussions of current and upcoming research topics in the field concerning a unified theory for handling stochastic design processes.
This book summarizes the technical advances in recent decades and the various theories on rock excavation raised by scholars from different countries, including China and Russia. It not only focuses on rock blasting but also illustrates a number of non-blasting methods, such as mechanical excavation in detail. The book consists of 3 parts: Basic Knowledge, Surface Excavation and Underground Excavation. It presents a variety of technical methods and data from diverse sources in the book, making it a valuable theoretical and practical reference resource for engineers, researchers and postgraduates alike.
Characteristics and Uses of Steel Slag in Building Construction focuses predominantly on the utilization of ferrous slag (blast furnace and steel slag) in building construction. This extensive literature review discusses the worldwide utilization of ferrous slag and applications in all sectors of civil engineering, including structural engineering, road construction, and hydro-technical structures. It presents cutting-edge research on the characteristics and properties of ferrous slag, and its overall impact on the environment.
This book offers valuable insights and provides effective tools useful for imagining, creating, and promoting novel and challenging developments in structural mechanics. It addresses a wide range of topics, such as mechanics and geotechnics, vibration and damping, damage and friction, experimental methods, and advanced structural materials. It also discusses analytical, experimental and numerical findings, focusing on theoretical and practical issues and innovations in the field. Collecting some of the latest results from the Lagrange Laboratory, a European scientific research group, mainly consisting of Italian and French engineers, mechanicians and mathematicians, the book presents the most recent example of the long-term scientific cooperation between well-established French and Italian Mechanics, Mathematics and Engineering Schools. It is a valuable resource for postgraduate students, researchers and practitioners dealing with theoretical and practical issues in structural engineering.
This book provides a snapshot of the research activities of the Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences in Vienna, Austria. The topics are broad ranged including: * Centrifuge model testing * Constitutive model * Granular physics * Numerical simulation * Soil bioengineering The topics reflect our geotechnical research in a changing world. Traditional topics in foundation engineering are fading out and new topics are emerging. The European Commission is gratefully acknowledged for funding the following projects within its program FP7 and Horizon2020: MUMOLADE (Multiscale modelling of landslide and debris flow), REVENUES (Reinforced Vegetation Numerical Evaluation of Slopes) and GEORAMP (Geohazards - Risk Assessment, Mitigation and Prevention).
This volume gathers the latest advances, innovations, and applications in the field of geotechnical engineering, as presented by leading researchers and engineers at the 7th Italian National Congress of Geotechnical Researchers (CNRIG 2019), entitled "Geotechnical Research for the Protection and Development of the Territory" (Lecco, Italy, July 3-5, 2019). The congress is intended to promote exchanges on the role of geotechnical research and its findings regarding the protection against natural hazards, design criteria for structures and infrastructures, and the definition of sustainable development strategies. The contributions cover a diverse range of topics, including infrastructural challenges, underground space utilization, and sustainable construction in problematic soils and situations, as well as geo-environmental aspects such as landfills, environmental and energy geotechnics, geotechnical monitoring, and risk assessment and mitigation. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations.
A comprehensive approach to building-related deterioration and intervention This essential technical reference gives building professionals the knowledge and tools they need to better diagnose building-related deterioration, identify sound treatment options and solutions, and design to minimize performance problems on new projects. Combining a clear and accessible explanation of the principles and mechanisms of building deterioration with coverage of a broad array of intervention methods, it is a ready resource for anyone whose work is concerned with improving building performance.
This important textbook provides an introduction to the concepts of
the newly developed extended finite element method (XFEM) for
fracture analysis of structures, as well as for other related
engineering applications.
The book includes peer-reviewed contributions selected from presentations given at the Istanbul Bridge Conference 2014, held from August 11 - 13 in Istanbul, Turkey. It reports on the current challenges in bridge engineering faced by professionals around the globe, giving a special emphasis to recently developed techniques, innovations and opportunities. The book covers key topics in the field, including modeling and analysis methods; construction and erection techniques; design for extreme events and condition assessment and structural health monitoring. There is a balanced presentation of theory, research and practice. This book, which provides the readers with a comprehensive and timely reference guide on current practices in bridge engineering, is intended for professionals, academic researchers and students alike.
First published in 1968, Jacob Feld's Construction Failure has long been considered the classic text on the subject. Retaining all of the key components of Feld's comprehensive exploration of the root causes of failure, this Second Edition addresses a multitude of important industry developments to bring this landmark work up to date for a new generation of engineers, architects, and students. In addition to detailed coverage of current design tools, techniques, materials, and construction methods, Construction Failure, Second Edition features an entire chapter on the burgeoning area of construction litigation, including a thorough examination of alternative dispute resolution techniques. Like the original, this edition discusses technical and procedural failures of many different types of structures, but is now supplemented with new case studies to illustrate the dynamics of failure in action today. Jacob Feld knew thirty years ago that in order to learn from our mistakes, we must first acknowledge and understand them. With this revised volume, Kenneth Carper has ensured that Feld's now-posthumous message will continue to be heard for years to come. Jacob Feld's comprehensive work on failure analysis has now been skillfully amended to address current design and construction tools, materials, and practices. Building on the first edition's peerless examination of the causes and lessons of failure, Construction Failure, Second Edition provides you with expanded coverage of:
Construction Failure has as much to teach us today as it did thirty years ago. This revised volume is an essential resource for design engineers, architects, construction managers, lawyers, and students in all of these fields.
The book is a tribute to the research contribution of Professor Andrei Reinhorn in the field of earthquake engineering. It covers all the aspects connected to earthquake engineering starting from computational methods, hybrid testing and control, resilience and seismic protection which have been the main research topics in the field of earthquake engineering in the last 30 years. These were all investigated by Prof. Reinhorn throughout his career. The book provides the most recent advancements in these four different fields, including contributions coming from six different countries giving an international outlook to the topics.
Written for engineers without a background in seismic design. Provides design standards and parameters, explaining how to interpret and apply them. Examines and recommends procedures to accommodate the enormous forces and variations in effects common to major earthquakes. Covers practical aspects of soil behavior and structural and foundation design. Gives tips on special construction situations: foundations, dams and retaining walls, strengthening existing structures and construction over active faults.
The book presents research papers presented by academicians, researchers, and practicing structural engineers from India and abroad in the recently held Structural Engineering Convention (SEC) 2014 at Indian Institute of Technology Delhi during 22 - 24 December 2014. The book is divided into three volumes and encompasses multidisciplinary areas within structural engineering, such as earthquake engineering and structural dynamics, structural mechanics, finite element methods, structural vibration control, advanced cementitious and composite materials, bridge engineering, and soil-structure interaction. Advances in Structural Engineering is a useful reference material for structural engineering fraternity including undergraduate and postgraduate students, academicians, researchers and practicing engineers.
This book offers a broad perspective on important topics in earthquake geotechnical engineering and gives specialists and those that are involved with research and application a more comprehensive understanding about the various topics. Consisting of eighteen chapters written by authors from the most seismic active regions of the world, such as USA, Japan, Canada, Chile, Italy, Greece, Portugal, Taiwan, and Turkey, the book reflects different views concerning how to assess and minimize earthquake damage. The authors, a prominent group of specialists in the field of earthquake geotechnical engineering, are the invited lecturers of the International Conference on Earthquake Geotechnical Engineering from Case History to Practice in the honour of Professor Kenji Ishihara held in Istanbul, Turkey during 17-19 June 2013.
This book reviews and assesses the various methodologies for site characterization and site effect estimation to carry out seismic zonation at micro and macro levels. Readers will learn about the suitability of these methodologies for each level of zoning that needs to be assessed in order to optimize the resources for carrying out seismic zonation. The Indian sub-continent is highly vulnerable to earthquake hazards, and past studies have focused primarily on the Himalayan region (inter-plate zone) and the northeast region (subduction zone). The book improves understanding of the Peninsular India that also has significantly high seismicity and is prone to earthquakes of sizeable magnitude. Particular attention is given to the various methodologies for assessing seismic hazards, the scales at which site characterizations are carried out, and optimal methods for zonation practices using site data and hazard indexes. Aimed at students, this book will be of use to post-graduates and doctoral students researching seismic zonation, hazard assessment and mitigation, and spatial data in earth sciences.
This book presents the basic theories of Plastic Mechanics of Geomaterial, including the static and dynamic mechanical properties, nonlinear and classical plastic theory, yield surface theory, hardening model, flow rule and loading-unloading criterion, the calculation theory of principal stress axe rotation, and limit analysis of geomaterial and the latest advances in FEM limit analysis. It also set forth the typical static and dynamic constitutive model of geomaterial in detail. Broadening our understanding of the basic mechanical properties and constitutive model for geomaterial, the book helps readers to establish and select the most appropriate constitutive model according to the specific engineering problems and geomaterial characteristics. This book is a valuable resource for designers and researchers in fields related to geotechnical engineering, and it can also be used as a textbook for graduate courses.
This book sheds light on the shear behavior of Fiber Reinforced Concrete (FRC) elements, presenting a thorough analysis of the most important studies in the field and highlighting their shortcomings and issues that have been neglected to date. Instead of proposing a new formula, which would add to an already long list, it instead focuses on existing design codes. Based on a comparison of experimental tests, it provides a thorough analysis of these codes, describing both their reliability and weaknesses. Among other issues, the book addresses the influence of flange size on shear, and the possible inclusion of the flange factor in design formulas. Moreover, it reports in detail on tests performed on beams made of concrete of different compressive strengths, and on fiber reinforcements to study the influence on shear, including size effects. Lastly, the book presents a thorough analysis of FRC hollow core slabs. In fact, although this is an area of great interest in the current research landscape, it remains largely unexplored due to the difficulties encountered in attempting to fit transverse reinforcement in these elements.
This text contains contributions from various authors on topics related to probabilistic methods used for the design of structures. Several of the papers were initially prepared for advanced courses on structural reliability or on probabilistic methods for structural design. These courses have been held in several countries and have been given by various groups of lecturers. They were aimed at engineers and researchers that had already been exposed to structural reliability methods, and presented overviews of the various topics. The book includes a selection of these contributions, which should be of use to future courses or for engineers and researchers who want an up-to-date overview. It is complementary to the existing textbooks on structural reliability, which normally cover the basic topics but exclude the more specialized aspects. In addition, several papers have been specially prepared for this book, complementing the others in providing an overall account of recent advances in the field. Among the topics covered are modelling of uncertainty, prediction of the strength of components, load modelling and combination, assessment of structural systems, stochastic finite elements and design consideration. This volume is directed at practitioners as well as researchers.
This book covers several aspects of the synthesis of composites by the pressureless infiltration technique. It describes the methods used to obtain green preforms, such as cold pressed and hot sintering, describing the heating time, load, and time required for pressing the preforms. Additionally, wettability phenomena, which is directly related on infiltration, is extensively described. Wettability process and interfacial reactions are analyzed in many ceramic-metal systems prior to fabricate the composites. A complete description of fabrication processes for Metal Matrix Composites is included. An extensive section on structural, chemical, and mechanical characterization of composites fabricated with aluminum and magnesium alloys as matrices reinforced with titanium carbide (TiC), aluminum nitride (AlN), silicon carbide (SiC) and alumina (Al2O3) is included. Relevant techniques for joining composites, such as welding and brazing are addressed. As well as issues pertaining to the corrosion and wear of composites are discussed as well. Corrosion behavior of some composites exposed to aqueous media was analyzed. Corrosion of composites using TiC and SiC like reinforcement and Al, Ni, and some Al-Cux, Al-Mgx and Al-Cu-Li alloys like matrix is discussed extensively. The structural characterization techniques addressed include: scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), optical microscopy (OM), differential thermal analysis (DTA), high resolution transmission electron microscopy (HRTEM), and thermogravimetry analysis (TGA). Mechanical testing including hardness, elastic modulus, tension tests, and impact tests were used in the characterization of composites. Theoretical models for prediction of some mechanical properties are included too.
This manual provides the reader with an accurate and convenient method for estimatig direct labor for general contrsuction work for any given system, plant, or location. Though this book, the reader has a reliable process of obtaining and streamlining an efficent model of operation. |
You may like...
Online Course Management - Concepts…
Information Reso Management Association
Hardcover
R7,372
Discovery Miles 73 720
|