![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering
This book is the second volume of the proceedings of the 4th GeoShanghai International Conference that was held on May 27 - 30, 2018. The book, entitled "Fundamentals of Soil Behaviours", presents the recent advances and technology in the understanding and modelling of fundamentals of soil's behaviours. The subject of this book covers a wide range of topics related to soil behaviours in geotechnical engineering, geoenvironmental engineering and transportation engineering. The state-of-the-art theories, methodologies and findings in the related topics are included. This book may benefit researchers and scientists from the academic fields of soil and rock mechanics, geotechnical engineering, geoenvironmental engineering, transportation engineering, geology, mining and energy, as well as practical engineers from industry. Each of the papers included in this book received at least two positive peer reviews. The editors would like to express their sincerest appreciation to all of the anonymous reviewers all over the world, for their diligent work.
This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.
This is the first book to integrate the theory, design, and stability analysis of plates and shells in one comprehensive volume. With authoritative accounts of diverse aspects of plates and shells, this volume facilitates the study and design of structures that incorporate both plate and shell components. Drawing on his extensive experience in plate and shell theory and design, the author introduces the principles and applications of bending of plates; membrane theory and bending of shells; and stability of plates and shells... explains the crucial elements of roof structure analysis and finite element formulations... explores topics of current interest, such as plastic design of plates and approximate solution of membrane stress in shells of revolution and in buckling of shells... and describes how to select design approaches according to the functional and safety requirements of specific structures. Each chapter demonstrates the principles, practical applications, and design of a plate or shell component using real-life examples, providing the reader with an in-depth, unified understanding of the theory and function of the component. Chapters are written to be as independent of each other as possible, to allow for selective reading on either plates or shells. In addition, the text is conveniently supplemented by appendices of Fourier Series and Bessel Functions. Integrating the fundamental and applied aspects of plate and shell theory, this volume serves as an essential text for graduate students and an easy-to-use reference for engineers in mechanical, civil, and aeronautical engineering.
This book is focused on the seismic vulnerability assessment methods, applied to existing buildings, describing several behaviors and new approaches for assessment on a large scale (urban area). It is clear that the majority of urban centers are composed of old buildings, designed according to concepts and rules that are inadequate to the seismic context. How to assess the vulnerability of existing buildings is an essential step to improve the management of seismic risk and its prevention policy. After some key reminders, this book describes seismic vulnerability methods applied to a large number of structures (buildings and bridges) in moderate (France, Switzerland) and strong seismic prone regions (Italy, Greece). Contents 1. Seismic Vulnerability of Existing Buildings: Observational and Mechanical Approaches for Application in Urban Areas, Sergio Lagomarsino and Serena Cattari. 2. Mechanical Methods: Fragility Curves and Pushover Analysis, Caterina Negulescu and Pierre Gehl. 3. Seismic Vulnerability and Loss Assessment for Buildings in Greece, Andreas J. Kappos. 4. Experimental Method: Contribution of Ambient Vibration Recordings to the Vulnerability Assessment, Clotaire Michel and Philippe Gueguen. 5. Numerical Model: Simplified Strategies for Vulnerability Seismic Assessment of Existing Structures, Cedric Desprez, Panagiotis Kotronis and Stephane Grange. 6. Approach Based on the Risk Used in Switzerland, Pierino Lestuzzi. 7. Preliminary Evaluation of the Seismic Vulnerability of Existing Bridges, Denis Davi. About the Authors Philippe Gueguen is a Senior IFSTTAR Researcher at ISTerre, Joseph Fourier University Grenoble 1, France
Structural Synthesis in Precision Elasticity reflects the summary of theoretical and experimental studies whose conclusions are effective for optimized structural synthesis in precision elasticity, as well as demonstrate a large experience and options in the synthesis, production, application of precision elastic guides, mechanisms, correctors, transducers, instruments and machines. The main focus of this book is in the possible simplification of the corresponding analytical apparatus by using kinematical equivalents, matrix methods, appropriate contours, and function expansion with enough accurate minimal polynomials. This approach allows for substitution of some known unwieldy formulae and methods that are not convenient for digestible and tractable synthesis. The book consists of two main parts: the elastic systems functional analysis and structural synthesis methods, including effective approximations and references to the history of their development; and, the application and development of prevision functional elastic systems at reference and operating conditions, including the observation of archives with effective synthesized structures. recommendations. This book gives theoretical and practical tools to researchers, precision machines, instruments and miniature systems designers, engineers, metrologists, and engineering students. Despite that this book is dedicated to the general problems of the structural synthesis in precision elasticity, most of the practical examples and applications are concerned with the measuring systems as the precision is their main goal.The author intends to show close connection between the elastic precision structures developed during the 20th century, and even before and the new elastic systems for atomic for microscopy and other recently created advanced structures in precision elasticity.
This Festschrift marks the retirement of Professor Chris Calladine, FRS after 42 years on the teaching staff of the Department of Engineering, University of Cambridge. It contains a series of papers contributed by his former students, colleagues, and friends. Chris Calladine's research has ranged very widely across the field of struc tural mechanics, with a particular focus on the plastic deformation of solids and structures, and the behaviour of thin-shell structures. His insightful books on Engineering Plasticity and Theory of Shell Structures have been appreciated by many generations of students at Cambridge and elsewhere. His scientific contri bution outside engineering, in molecular structures, is at least as significant, and he is unique among engineers in having co-authored a book on DNA. Also, he has been keenly interested in the research of many students and colleagues, and on many occasions his quick grasp and physical insight have helped a student, and sometimes a colleague, find the nub of the problem without unnecessary effort. Many of the papers contained in this volume gratefully acknowledge this generous contribution. We thank Professor G. M. l. Gladwell for reading through all of the contri butions, Mrs R. Baxter and Mrs o. Constantinides for help in preparing this volume, Godfrey Argent Studio for permission to reproduce Calladine's por trait for the Royal Society, and Dr A. Schouwenburg -from Kluwer- for his assistance. Horace R. Drew Sergio Pellegrino ix CHRIS CALLADINE SOME THOUGHTS ON RESEARCH c. R."
LOAD RATING HIGHWAY BRIDGES In accordance with Load and Resistance Factor Rating Method First Edition The first comprehensive text introducing the background theory along with the practical procedure of load rating highway bridges with the state-of-the-art Load and Resistance Factor Rating (LRFR) method. With its simplicity and complete contents on this subject, this is an indispensable text for both students and practicing engineers. The safety of bridges is essential to the traveling public. To ensure that bridges in our highway system function safely and serve properly, engineers need to inspect and assess the live load carrying capacity of the bridges. Based on the results of inspection and evaluation, decisions are made on load restriction, repair, retrofit or replacement. Load rating, one of the critical tasks in this decision-making process, uses either an analytical method or non-destructive load testing to determine the live load carrying capacity of a bridge. This is a book solely concentrated on bridge load rating by using analytical load rating methods, with a focus on the LRFR method. The primary purpose of this book is to provide the basic concept of load rating highway bridges in terms of the LRFR method. The target readers are practicing engineers who want to acquire fundamental knowledge of the LRFR method. Bearing that in mind, the author attempts to strike a balance between theory and how-to. Engineers who are conducting or will perform load ratings of bridges can use this text as a reference in supplement to the AASHTO Manual for Bridge Evaluation (MBE). This book can also serve as a textbook or supplemental material for a senior level undergraduate or graduate course in bridge design and load rating. This text is divided into three major sections. The first section contains a brief introduction to bridge load rating (Chapter 1) and fundamentals of structural failure and structural reliability theory (Chapter 2). After completing this section, re
This book provide a series of designs, materials, characterization and modeling, that will help create safer and stronger structures in coastal areas. The authors take a look at the different materials (porous, heterogeneous, concrete...), the moisture transfers in construction materials as well as the degradation caused by external attacks and put forth systems to monitor the structures or evaluate the performance reliability as well as degradation scenarios of coastal protection systems.
This book contains the edited version of the lectures presented at the NATO Advanced Study Institute on computer-aided analysis of rigid and flexible mechanical systems, held in Troacuteia, Portugal, from June 27-July 9, 1993. The topics presented include formulations and numerical aspects of rigid and flexible multibody dynamics, object-oriented paradigms, optimal design and synthesis, robotics, kinematics, path planning, control, impact dynamics and aspects of application. The book discusses these topics in a tutorial and review manner, providing a comprehensive summary of current work. It should, therefore, be suitable for a range of readers, from advanced students to researchers and implementers.
This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.
On Fracture Mechanics A major objective of engineering design is the determination of the geometry and dimensions of machine or structural elements and the selection of material in such a way that the elements perform their operating function in an efficient, safe and economic manner. For this reason the results of stress analysis are coupled with an appropriate failure criterion. Traditional failure criteria based on maximum stress, strain or energy density cannot adequately explain many structural failures that occurred at stress levels considerably lower than the ultimate strength of the material. On the other hand, experiments performed by Griffith in 1921 on glass fibers led to the conclusion that the strength of real materials is much smaller, typically by two orders of magnitude, than the theoretical strength. The discipline of fracture mechanics has been created in an effort to explain these phenomena. It is based on the realistic assumption that all materials contain crack-like defects from which failure initiates. Defects can exist in a material due to its composition, as second-phase particles, debonds in composites, etc. , they can be introduced into a structure during fabrication, as welds, or can be created during the service life of a component like fatigue, environment-assisted or creep cracks. Fracture mechanics studies the loading-bearing capacity of structures in the presence of initial defects. A dominant crack is usually assumed to exist.
'Tensile Fracturing in Rocks' presents field observations on fracturing of sedim- tary rocks and granite outcrops from various provinces in three continents. It also combines results of recent experiments conducted at different laboratories around the world with current theories on fracturing. In treating faults, this book limits itself to faults that are associated with joint sets produced by definable causes and occasi- ally to cases where interaction between the two types of fracture - faults and joints - is not clear. The book's subject matter is divided over six chapters, which are briefly described below. Chapter 1 summarizes current key concepts in fracture physics. It starts with a pr- entation of the elastic theory of fracture, and concentrates on the results of linear el- tic fracture mechanics. The chapter touches also upon other fracture properties, e.g., crack nucleation, dynamic fracturing and slow fracturing processes. Nucleation is - dressed by statistical mechanics methods incorporating modern approaches of th- mal and fiber bundle processes. The analyses of dynamic fracturing and slow fract- ing focus on the differences, as compared to the linear elastic approach. The cont- versy in interpreting experimental dynamic results is highlighted, as are the surface morphology patterns that emerge in fracturing and the non-Griffith crack extension criterion in very slow fracturing processes.
In the modem language of reservoir engineering by reservoir description is understood the totality of basic local information concerning the reservoir rock and fluids which by various procedures are extrapolated over the entire reservoir. Fracture detection, evaluation and processing is another essential step in the process of fractured reservoir description. In chapter 2, all parameters related to fracture density and fracture intensity, together with various procedures of data processing are discussed in detail. After a number of field examples, developed in Chap. 3, the main objective remains the quantitative evaluation of physical properties. This is done in Chap. 4, where the evaluation of fractures porosity and permeability, their correlation and the equivalent ideal geometrical models versus those parameters are discussed in great detail. Special rock properties such as capillary pressure and relative permeability are reexamined in the light of a double-porosity reservoir rock. In order to complete the results obtained by direct measurements on rock samples, Chap. 5 examines fracturing through indirect measurements from various logging results. The entire material contained in these five chapters defines the basic physical parameters and indicates procedures for their evaluation which may be used further in the description of fractured reservoirs.
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.
I I This book is intended to guide practicing structural engineers into more profitable routine designs with the AISC Load and Resistance Factor Design Specification (LRFD) for structural steel buildings. LRFD is a method of proportioning steel structures so that no applica ble limit state is exceeded when the structure is subjected to all appro priate factored load combinations. Strength limit states are related to safety, and concern maximum load carrying capacity, Serviceability limit states are related to performance under service load conditions such as deflections. The term "resistance" includes both strength states and serviceability limit states. LRFD is a new approach to the design of structural steel for buildings. It involves explicit consideration of limit states, multiple load factors and resistance factors, and implicit probabilistic determination of relia bility. The type of factoring used by LRFD differs from the allowable stress design of Chapters A through M of the 1989 Ninth Edition of the AISC Specifications for Allowable Stress Design, where only the resistance is divided by a factor of safety to obtain an allowable stress, and from the plastic design provisions of Chapter N, where the loads are multi plied by a common load factor of 1.7 for gravity loads and 1.3 for gravity loads acting with wind or seismic loads. LRFD offers the structural engineer greater flexibility, rationality, and economy than the previous 1989 Ninth Edition of the AISC Specifications for Allowable Stress Design."
In 1875, a team of cartographers, geologists, and scientists under the direction of Ferdinand V. Hayden entered the Four Corners area for what they thought would be a calm summer's work completing a previous survey. Their accomplishments would go down in history as one of the great American surveying expeditions of the nineteenth century. By skillfully weaving the surveyors' diary entries, field notes, and correspondence with newspaper accounts, historians Robert S. McPherson and Susan Rhoades Neel bring the Hayden Survey to life. Mapping the Four Corners provides an entertaining, engaging narrative of the team's experiences, contextualized with a thoughtful introduction and conclusion. Accompanied by the great photographer William Henry Jackson, Hayden's team quickly found their trip to be more challenging than expected. The travelers describe wrangling half-wild pack mules, trying to sleep in rain-soaked blankets, and making tea from muddy, alkaline water. Along the way, they encountered diverse peoples, evidence of prehistoric civilizations, and spectacular scenery - Hispanic villages in Colorado and New Mexico; Mesa Verde, Hovenweep, and other Anasazi sites; and the Hopi mesas. Not everyone they met was glad to see them: in southeastern Utah surveyors fought and escaped a band of Utes and Paiutes who recognized that the survey meant dispossession from their homeland. Hayden saw his expedition as a scientific endeavor focused on geology, geographic description, cartographic accuracy, and even ethnography, but the search for economic potential was a significant underlying motive. As this book shows, these pragmatic scientists were on the lookout for gold beneath every rock, grazing lands in every valley, and economic opportunity around each bend in the trail. The Hayden Survey ultimately shaped the American imagination in contradictory ways, solidifying the idea of ""progress"" - and government funding of its pursuit - while also revealing, via Jackson's photographs, a landscape with a beauty hitherto unknown and unimagined.
F.K. Lehner: A Review of the Linear Theory of Anisotropic Poroelastic Solids. - J.W. Rudnicki: Eshelby's Technique for Analyzing Inhomogeneities in Geomechanics. - Y. Gueguen, M. Kachanov: Effective Elastic Properties of Cracked and Porous Rocks - an Overview. - J.L. Raphanel: 3D Morphology Evolution of Solid-Fluid Interfaces by Pressure Solution. - Y.M. Leroy: An Introduction to the Finite-Element Method for Linear and Non-linear Static Problems. The mechanical behaviour of the earth's upper crust enters into a great variety of questions in different areas of the geological and geophysical sciences as well as in the more applied geotechnical disciplines. This volume presents a selection of papers from a CISM course in Udine on this topic. While each of these chapters will make for a useful contribution in its own right, the present bundle also illustrates, by way of examples, the variety of theoretical concepts and tools that are currently brought to bear on earth deformation studies, ranging from reviews of poroelastic field theory to micro-mechanical and homogenization studies, chemomechanics and interfacial stability theory of soluble solids under stress, and finally to an introduction to the finite element method.
This book assembles, identifies and highlights the most recent developments in Rehabilitation and retrofitting of historical and heritage structures. This is an issue of paramount importance in countries with great built cultural heritage that also suffer from high seismicity, such as the countries of the eastern Mediterranean basin. Heritage structures range from traditional residential constructions to monumental structures, ancient temples, towers, castles, etc. It is generally recognized that these structures present particular difficulties in seismic response calculation through computer simulation due to the complexity of the structural system which is, generally, inhomogeneous, with several contact problems, gaps/joints, nonlinearities and brittleness in material constituents. This book contains selected papers from the ECCOMAS Thematic Conferences on Computational Methods in Structural Dynamics & Earthquake Engineering (COMPDYN) that were held in Corfu, Greece in 2011 and Kos, Greece in 2013. The Conferences brought together the scientific communities of Computational Mechanics, Structural Dynamics and Earthquake Engineering in an effort to facilitate the exchange of ideas in topics of mutual interest and to serve as a platform for establishing links between research groups with complementary activities.
Research studies on the preparation for and mitigation of future earthquakes, an area of increasing importance to many countries around the world, comprise this volume. The selected papers included in this book have been prepared by experts from around the world in the fields of earthquake engineering relevant to the design of structures. As the world's population has concentrated in urban areas resulting in buildings in regions of high seismic vulnerability, we have seen the consequences of natural disasters take an ever higher toll on human existence. Protecting the built environment in earthquake-prone regions involves not only the optimal design and construction of new facilities, but also the upgrading and rehabilitation of existing structures including heritage buildings, which is an important area of research. Major earthquakes and associated effects, such as tsunamis, continue to stress the need to carry out more research and a better understanding of these phenomena is required to design earthquake resistant buildings and to carry out risk assessment and vulnerability studies.
The availability of computers has, in real terms, moved forward the practice of structural engineering. Where it was once enough to have any analysis given a complex configuration, the profession today is much more demanding. How engineers should be more demanding is the subject of this book. In terms of the theory of structures, the importance of geometric nonlinearities is explained by the theorem which states that "In the presence of prestress, geometric nonlinearities are of the same order of magnitude as linear elastic effects in structures. " This theorem implies that in most cases (in all cases of incremental analysis) geometric nonlinearities should be considered. And it is well known that problems of buckling, cable nets, fabric structures, ... REQUIRE the inclusion of geometric nonlinearities. What is offered in the book which follows is a unified approach (for both discrete and continuous systems) to geometric nonlinearities which incidentally does not require a discussion of large strain. What makes this all work is perturbation theory. Let the equations of equilibrium for a system be written as where P represents the applied loads, F represents the member forces or stresses, and N represents the operator which describes system equilibrium.
This book explores the meta-heuristics approach called tabu search, which is dramatically changing our ability to solve a host of problems that stretch over the realms of resource planning, telecommunications, VLSI design, financial analysis, scheduling, space planning, energy distribution, molecular engineering, logistics, pattern classification, flexible manufacturing, waste management, mineral exploration, biomedical analysis, environmental conservation and scores of other problems. The major ideas of tabu search are presented with examples that show their relevance to multiple applications. Numerous illustrations and diagrams are used to clarify principles that deserve emphasis, and that have not always been well understood or applied. The book's goal is to provide hands-on' knowledge and insight alike, rather than to focus exclusively either on computational recipes or on abstract themes. This book is designed to be useful and accessible to researchers and practitioners in management science, industrial engineering, economics, and computer science. It can appropriately be used as a textbook in a masters course or in a doctoral seminar. Because of its emphasis on presenting ideas through illustrations and diagrams, and on identifying associated practical applications, it can also be used as a supplementary text in upper division undergraduate courses. Finally, there are many more applications of tabu search than can possibly be covered in a single book, and new ones are emerging every day. The book's goal is to provide a grounding in the essential ideas of tabu search that will allow readers to create successful applications of their own. Along with the essential ideas, understanding of advanced issues is provided, enabling researchers to go beyond today's developments and create the methods of tomorrow.
This book contains a collection of major research contributions over the last decade in the area of composite materials and sandwich structures supported by the Of?ce of Naval Research (ONR) under the direction of Dr. Yapa D. S. Rajapakse. The Solid Mechanics Research Program at ONR supports research in mechanics of high performancematerialsfortheeffectivedesignofdurableandaffordableNavalstr- tures. Such structures operate in severe environments, and are designed to withstand complex multi-axial loading conditions, including highly dynamic loadings. The - fective design of these structures requires an understanding of the deformation and failure characteristics of structural materials, and the ability to predict and control their performance characteristics. The major focus is on mechanics of composite materials and composite sandwich structures. The program deals with understa- ing and modeling the physical processes involved in the response of glass-?ber and carbon-?ber reinforced composite materials and composite sandwich structures to static, cyclic, and dynamic, multi-axial loading conditions, in severe environments (sea water, moisture, temperature extremes, and hydrostatic pressure). This anthology consists of 30 chapters written by ONR contractors and rec- nized experts in their ?elds and serves as a reference and guide for future research. |
![]() ![]() You may like...
Problem Solving and Uncertainty Modeling…
Pratiksha Saxena, Dipti Singh, …
Hardcover
R6,167
Discovery Miles 61 670
Socio-Inspired Optimization Methods for…
Apoorva Shastri, Aniket Nargundkar, …
Hardcover
R2,873
Discovery Miles 28 730
Mathematical Research for Blockchain…
Panos Pardalos, Ilias Kotsireas, …
Hardcover
R4,348
Discovery Miles 43 480
Andre's Reboot - Striving to Save…
Steve Coleman, Stephen B Coleman
Hardcover
Nonlinear Analysis - Stability…
Panos M. Pardalos, Pando G. Georgiev, …
Hardcover
R4,563
Discovery Miles 45 630
Dynamic Web Application Development…
David Parsons, Simon Stobart
Paperback
|