![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering
Plates and panels are primary components in many structures including space vehicles, aircraft, automobiles, buildings, bridge decks, ships and submarines. The ability to design, analyse, optimise and select the proper materials for these structures is a necessity for structural designers, analysts and researchers. This text consists of four parts. The first deals with plates of isotropic (metallic and polymeric) materials. The second involves composite material plates, including anisotropy and laminate considerations. The third section treats sandwich constructions of various types, and the final section gives an introduction to plates involving piezoelectric materials, in which the "smart" or "intelligent" materials are used as actuators or sensors. In each section, the formulations encompass plate structures subjected to static loads, dynamic loads, buckling, thermal/moisture environments, and minimum weight structural optimisation. This is a textbook for a graduate course, an undergraduate senior course and a reference. Many homework problems are given in various chapters.
This comprehensive textbook focuses on the torsion in thin walled structures, highlights the nuances of the problems faced and succinctly discusses warping, bimoment, etc. Since in several thin walled structures, torsion is the only or dominant loading, this book addresses such unique structures as well. It provides a concise explanation of the warping properties and how they are evaluated. Thin walled structures with torsion as the preponderant loading are then treated using classical and finite element methods. No prior knowledge of the finite element method is required as the method is introduced from the basics. The same problem is worked out by both approaches so that the concepts are clearly understood by the readers. The book includes pedagogical features such as end-of-chapter questions and worked out examples to augment learning and self-testing. The book will be useful for graduate courses as well as for professional development coursework for structural engineers in the aerospace, mechanical, and civil engineering domains.
A comprehensive book focusing on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation This book focusses on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation. A review of the current nonlinear analysis method for earthquake engineering will be summarized and explained. Additionally, how the force analogy method can be used in nonlinear static analysis will be discussed through several nonlinear static examples. The emphasis of this book is to extend and develop the force analogy method to performing dynamic analysis on structures under earthquake excitations, where the force analogy method is incorporated in the flexural element, axial element, shearing element and so on will be exhibited. Moreover, the geometric nonlinearity into nonlinear dynamic analysis algorithm based on the force analogy method is included. The application of the force analogy method in seismic design for buildings and structural control area is discussed and combined with practical engineering.
This book comprises select proceedings of the International Conference on Trends and Recent Advances in Civil Engineering (TRACE 2020). The book focuses on the latest research developments in structural engineering, structural health monitoring, rehabilitation and retrofitting of structures, geotechnical engineering, and earthquake-resistant structures. The contents also cover the latest innovations in building repair and maintenance, and sustainable materials for rehabilitation and retrofitting. The contents of this book are useful for students, researchers, and professionals working in structural engineering and allied areas.
Stability of Discrete Non-conservative Systems first exposes the general concepts and results concerning stability issues. It then presents an approach of stability that is different from Lyapunov which leads to the second order work criterion. Thanks to the new concept of Kinematic Structural Stability, a complete equivalence between two approaches of stability is obtained for a divergent type of stability. Extensions to flutter instability, to continuous systems, and to the dual questions concerning the measure of non-conservativeness provides a full, fresh look at these fundamental questions. A special chapter is devoted to applications for granular systems.
This book reports on current challenges in bridge engineering faced by professionals around the globe, giving a special emphasis to recently developed techniques and methods for bridge design, construction and monitoring. Based on extended and revised papers selected from outstanding presentation at the Istanbul Bridge Conference 2018, held from November 5 - 6, 2018, in Istanbul, Turkey, and by highlighting major bridge studies, spanning from numerical and modeling studies to the applications of new construction techniques and monitoring systems, this book is intended to promote high standards in modern bridge engineering. It offers a timely reference to both academics and professionals in this field.
This book is related to a parametric study of the soil-structural interface shearing behavior based on the numerical simulations of interface shear test with DEM, which is conducted from the role of soil properties, particle properties and structural properties. To aid readers in easily understanding the generation, implementation of models and controlling modes, for each part, the relevant code is provided in the text, and the whole source code of model is given in Appendix to share with readers for practice. The book is intended for graduate-level teaching and research in soil mechanics and geotechnical engineering, as well as in other related engineering specialties. This book is also of use to industry practitioners due to the inclusion of real-world applications, opening the door to advanced courses on modeling within the industrial engineering and operations research fields.
Cities built on unconsolidated sediments consisting of clays, silt, peat, and sand, are particularly susceptible to subsidence. Such regions are common in delta areas, where rivers empty into the oceans, along flood plains adjacent to rivers, and in coastal marsh lands. Building cities in such areas aggravates the problem for several reasons: 1. Construction of buildings and streets adds weight to the
region causing additional soil deformations. 4. Levees and dams are often built to prevent or control flooding. Earth fissures caused by ground failure in areas of uneven or differential compaction have damaged buildings, roads and highways, railroads, flood-control structures and sewer lines. As emphasized by Barends, "in order to develop a legal framework to claims and litigation, it is essential that direct and indirect causes of land subsidence effects can be quantified with sufficient accuracy from a technical and scientific point of view." Most existing methods and software applications treat the subsidence problem by analyzing one of the causes. This is due to the fact that the causes appear at different spatial scales. For example, over-pumping creates large scale subsidence, while building loading creates local subsidence/consolidation only. Then, maximum permissible land subsidence (or consolidation) is a constraint in different management problems such as: groundwater management, planning of town and/or laws on building construction. It is, therefore, necessary to quantify the contribution of each cause to soil subsidence of the ground surface in cities urban area. In this text book, we present an engineering approach based on the Biot system of equations to predict the soil settlement due to subsidence, resulting from different causes. Also we present a case study of The Bangkok Metropolitan Area (BMA).
The exploration and extraction of the earth's resources are key issues in global industrial development. In the 21st century, emphasis has increasingly being placed on geo-engineering safety, engineering accountability and sustainability. With focus on rock engineering projects, Structural Geology and Rock Engineering uses case studies and an integrated engineering approach to provide an understanding of projects constructed on or in rock masses. Based on Professors Cosgrove and Hudson's university teaching at Imperial College London, as well as relevant short course presentations, it explains the processes required for engineering modelling, design and construction.The first half of the book provides step-by-step presentations of the principles of structural geology and rock mechanics with special emphasis on the integration between the two subjects. The second half of the book turns principles into practice. A wealth of practical engineering examples are presented, including evaluations of bridge foundations, quarries, dams, opencast coal mining, underground rock engineering, historical monuments and stone buildings.This up-to-date, well-illustrated guide is ideal for teachers, researchers and engineers interested in the study and practice of rock-based projects in engineering.
Structural health monitoring (SHM) has emerged as a prominent research area in recent years owing to increasing concerns about structural safety, and the need to monitor and extend the lives of existing structures. Structural Health Monitoring Using Genetic Fuzzy Systems elaborates the process of intelligent SHM development and implementation using the evolutionary system. The use of a genetic algorithm automates the development of the fuzzy system, and makes the method easy to use for problems involving a large number of measurements, damage locations and sizes; such problems being typical of SHM. The ideas behind fuzzy logic, genetic algorithms and genetic fuzzy systems are also explained. The functionality of the genetic fuzzy system architecture is elucidated within a case-study framework, covering: * SHM of beams; * SHM of composite tubes; and * SHM of helicopter rotor blades. Structural Health Monitoring Using Genetic Fuzzy Systems will be useful for aerospace, civil and mechanical engineers working with structures and structured components. It will also be useful for computer scientists and applied mathematicians interested in the application of genetic fuzzy systems to engineering problems.
This book contains selected papers in the area of structural engineering from the proceedings of the conference, Futuristic Approaches in Civil Engineering (FACE) 2019. In the area of construction materials, the book covers high quality research papers on raw materials and manufacture of cement, mixing, rheology and hydration, admixtures, characterization techniques and modeling, fiber-reinforced concrete, repair and retrofitting of concrete structures, novel testing techniques such as digital image correlation (DIC). Research on sustainable building materials like Geopolymer concrete and recycled aggregates are covered. In the area of earthquake engineering, papers related to the seismic response of load-bearing unreinforced masonry walls, reinforced concrete frame and buildings with dampers are covered. Additionally, there are chapters on structures subjected to vehicular impact and fire. The contents of this book will be useful for graduate students, researchers and practitioners working in the areas of concrete, earthquake and structural engineering.
This book is a collection of papers presented at the International Workshop on Geotechnical Natural Hazards held July 12-15, 2014, in Kitakyushu, Japan. The workshop was the sixth in the series of Japan-Taiwan Joint Workshops on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, held under the auspices of the Asian Technical Committee No. 3 on Geotechnology for Natural Hazards of the International Society for Soil Mechanics and Geotechnical Engineering. It was co-organized by the Japanese Geotechnical Society and the Taiwanese Geotechnical Society. The contents of this book focus on geotechnical and natural hazard-related issues in Asia such as earthquakes, tsunami, rainfall-induced debris flows, slope failures, and landslides. The book contains the latest information and mitigation technology on earthquake- and rainfall-induced geotechnical natural hazards. By dissemination of the latest state-of-the-art research in the area, the information contained in this book will help researchers, designers, consultants, government officials, and academicians involved in the mitigation of natural hazards. The findings and other information provided here is expected to contribute toward the development of a new chapter in disaster prevention and mitigation of geotechnical structures.
This book comprises select proceedings of the annual conference of the Indian Geotechnical Society. The conference brings together research and case histories on various aspects of geotechnical and geoenvironmental engineering. The book presents papers on geotechnical applications and case histories, covering topics such as (i) Characterization of Geomaterials and Physical Modelling; (ii) Foundations and Deep Excavations; (iii) Soil Stabilization and Ground Improvement; (iv) Geoenvironmental Engineering and Waste Material Utilization; (v) Soil Dynamics and Earthquake Geotechnical Engineering; (vi) Earth Retaining Structures, Dams and Embankments; (vii) Slope Stability and Landslides; (viii) Transportation Geotechnics; (ix) Geosynthetics Applications; (x) Computational, Analytical and Numerical Modelling; (xi) Rock Engineering, Tunnelling and Underground Constructions; (xii) Forensic Geotechnical Engineering and Case Studies; and (xiii) Others Topics: Behaviour of Unsaturated Soils, Offshore and Marine Geotechnics, Remote Sensing and GIS, Field Investigations, Instrumentation and Monitoring, Retrofitting of Geotechnical Structures, Reliability in Geotechnical Engineering, Geotechnical Education, Codes and Standards, and other relevant topics. The contents of this book are of interest to researchers and practicing engineers alike.
Coal Bed Methane: Theories and Applications, Second Edition, captures the full lifecycle of a coal bed methane well and offers petroleum geologists and engineers a single source for a broad range of coal bed methane (CBM) applications. The vast coal resources in the United States continue to produce tremendous amounts of natural gas, contributing to a diverse range of energy assets. This book addresses crucial technical topics, including exploration and evaluation of coal bed reservoirs, hydraulic fracturing of CBM wells, coal seam degasification, and production engineering and processing, among others. The book also covers legal issues and permitting, along with an economic analysis of CBM projects. This new edition includes information on new and established research and applications, making it relevant for field geologists and engineers, as well as students.
This book brings together a comprehensive and up-to-date presentation of the main scientific and technological aspects of limestone mining. The book discusses how to excavate limestone from surface mines including the nuances of production and commercial aspects.It addresses topical issues related with the quarrying of limestone and environmental protection measures adopted in mining and manufacturing. The chapters in this book describe planning and designing of mining processes to produce limestone that meets with market requirements and customer specifications. The book also discusses the environmental stresses caused by mining as an industrial activity and their ramifications and remedies. The book includes case studies from different geo-mining environments. The contents of this book will be useful to professionals, researchers, and policy makers alike.
For junior/senior-level courses in Systems Analysis or Systems Analysis and Economics as applied to civil engineering. With a reorganization and new material, the Second Edition of this acclaimed text is designed to enhance the student's learning experience by providing exposure to modeling ideas and concepts. Network flow problems are emphasized by highlighting their study separately from the general integer programming models that are considered. With a wider range of examples and exercises that conclude many chapters, this text offers students an extremely practical, accessible study on the most modern skills available for the design, operation and evaluation of civil and environmental engineering systems.
For undergraduate/graduate-level foundation engineering courses. Covers the subject matter thoroughly and systematically, while being easy to read. Emphasizes a thorough understanding of concepts and terms before proceeding with analysis and design, and carefully integrates the principles of foundation engineering with their application to practical design problems.
The sudden arrival of Building Information Modelling (BIM) as a key part of the building industry is redefining the roles and working practices of its stakeholders. Many clients, designers, contractors, quantity surveyors, and building managers are still finding their feet in an industry where BIM compliance can bring great rewards. This guide is designed to help quantity surveying practitioners and students understand what BIM means for them, and how they should prepare to work successfully on BIM compliant projects. The case studies show how firms at the forefront of this technology have integrated core quantity surveying responsibilities like cost estimating, tendering, and development appraisal into high profile BIM projects. In addition to this, the implications for project management, facilities management, contract administration and dispute resolution are also explored through case studies, making this a highly valuable guide for those in a range of construction project management roles. Featuring a chapter describing how the role of the quantity surveyor is likely to permanently shift as a result of this development, as well as descriptions of tools used, this covers both the organisational and practical aspects of a crucial topic.
Pipeline Rules of Thumb Handbook: A Manual of Quick, Accurate Solutions to Everyday Pipeline Engineering Problems, Ninth Edition, the latest release in the series, serves as the "go-to" source for all pipeline engineering answers. Updated with new data, graphs and chapters devoted to economics and the environment, this new edition delivers on new topics, including emissions, decommissioning, cost curves, and more while still maintaining the quick answer standard display of content and data that engineers have utilized throughout their careers. Glossaries are added per chapter for better learning tactics, along with additional storage tank and LNG fundamentals. This book continues to be the high-quality, classic reference to help pipeline engineers solve their day-to-day problems.
For undergraduate courses in Introduction to Soils, Fundamentals of Soil Science, and Soil Management. With an emphasis on the fundamentals, this book explores the important world of soils and the principles that can be used to minimize the degradation and destruction of one of our most important natural resources. Fully updated in this edition, it includes the latest information on soil colloids; nutrient cycles and soil fertility; and soils and chemical pollution. This edition is filled with hundreds of new figures and photos and continues to use examples from many fields, including agriculture, forestry, and natural resources. Taking an ecological approach, it emphasizes how the soil system is interconnected and the principles behind each soil concept.
This book presents a simple analytical method based on the extended rod theory that allows the earthquake resistance of high-rise buildings to be easily and accurately evaluated at the preliminary design stage. It also includes practical software for applying the extended rod theory to the dynamic analysis of actual buildings and structures. High-rise buildings in large cities, built on soft ground consisting of sedimentary rock, tend to have low natural frequency. If ground motion due to an earthquake occurs at distant hypocenters, the vibration wave can be propagated through several sedimentary layers and act on skyscrapers as a long-period ground motion, potentially producing a resonance phenomenon that can cause severe damage. Accordingly, there is a pressing need to gauge the earthquake resistance of existing skyscrapers and to improve their seismic performance. This book was written by authors who have extensive experience in tall-building seismic design in Japan. The software included enables readers to perform dynamic calculations of skyscrapers' resistance to vibrations. As such, it offers a valuable resource for practitioners and engineers, as well as students of civil engineering.
Wind Loads on Structures ClaAs Dyrbye Technical University of Denmark, Lyngby Svend O. Hansen Svend Ole Hansen, Consulting Engineers, Copenhagen, Denmark Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global wind), terrain (wind at low height), aerodynamic response (wind flow to pressure), mechanical response (wind pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook or background material. It derives the theoretical background of wind loaded structures and gives practical applications for a large variety of structures, such as low rise static structures, buildings, chimneys and cable-supported bridges. The European Prestandard on Wind Actions, ENV 1991-2-4, is used throughout the book as a code reference. |
You may like...
|