![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors.
Tunnel Boring Machine (TBM) constructed tunnels are widespread, and can deliver significant environmental and cost benefits. However, as noted in the noteworthy examples of TBM traffic tunnels presented in this book, there are still important challenges associated with them, linked in particular to structural safety in the event of earthquakes, as well as cost and safety issues during operation. To face these challenges, Innovation in TBM Traffic Tunnels presents three innovative concepts in the field of construction of TBM rail and road tunnels: the TISB concept that improves the structural safety of those built on soft soil in seismic areas, and the TMG and TMF concepts, for rail and road tunnels, respectively, that allow for significant reduction of their cost and the improvement of safety during operation. Examples of the application of these new concepts in the conceptual design of specific tunnel cases are presented and compared with solutions based on common approaches, demonstrating the additional benefits of these concepts. The book also draws attention to other innovations in TBM tunnelling that may improve the construction of tunnels in the future, especially when using the concepts mentioned above. Innovation in TBM Traffic Tunnels is aimed at professionals involved in the planning, design, and construction of tunnels for transport infrastructure, including authorities, consultants and construction companies, worldwide.
This book comprises the proceedings of the Annual Conference of the Canadian Society of Civil Engineering 2021. The contents of this volume focus on specialty conferences in construction, environmental, hydrotechnical, materials, structures, transportation engineering, etc. This volume will prove a valuable resource for those in academia and industry.
Learn to be a good investigator and a successful retracement
surveyor This extensive treatment is sure to become a standard reference work for professionals in many fields related to land investigation as well as a practical text for the training of investigators in the evidence recovery and interpretative processes leading to successful property location and ownership.
Onshore Structural Design Calculations: Energy Processing Facilities provides structural engineers and designers with the necessary calculations and advanced computer software program instruction for creating effective design solutions using structural steel and concrete, also helping users comply with the myriad of international codes and standards for designing structures that is required to house or transport the material being processed. In addition, the book includes the design, construction, and installation of structural systems, such as distillation towers, heaters, compressors, pumps, fans, and building structures, as well as pipe racks and mechanical and electrical equipment platform structures. Each calculation is discussed in a concise, easy-to-understand manner that provides an authoritative guide for selecting the right formula and solving even the most difficult design calculation.
This accessible guide to seismic design examines what earthquakes do to buildings and what can be done to improve building response to earthquakes. International examples and photographs are included as important learning aids in understanding the effects of earthquakes on structures.
Peter Smith has joined forces with skilled consultants to take his piping series to the next level. The Planning Guide to Piping Design covers the entire process of planning a plant model project from conceptual to mechanical completion, and explains where the piping lead falls in the process along with his roles and responsibilities. Piping Engineering Leads (or PEL's) used to only receive on-the-job training to learn the operation of producing a process plant. Over time, more schools and programs have developed a more advanced curriculum for piping engineers and designers. However, younger generations of engineers and designers are growing up with a much more technological view of piping design and are in need of a handbook that will explain the proven methods of planning and monitoring the piping design in step-by-step processes. This handbook will provide mentors in the process piping industries the bridge needed for the upcoming engineer and designer to grasp the requirements of piping supervision in the modern age.
In many plants, vibration and noise problems occur due to fluid flow, which can greatly disrupt smooth plant operations. These flow-related phenomena are called flow-induced vibration. This book explains how and why such vibrations happen and provides hints and tips on how to avoid them in future plant design. The world-leading author team doesn't assume prior knowledge of mathematical methods and provides the reader with information on the basics of modeling. The book includes several practical examples and thorough explanations of the structure, the evaluation method and the mechanisms to aid understanding of flow-induced vibrations.
Construction Engineering Calculations and Rules of Thumb begins with a brief, but rigorous, introduction to the mathematics behind the equations that is followed by self-contained chapters concerning applications for all aspects of construction engineering. Design examples with step-by-step solutions, along with a generous amount of tables, schematics, and calculations are provided to facilitate more accurate solutions through all phases of a project, from planning, through construction and completion.
This book provides the reader with a review of the most relevant research on the structural characterization and seismic retrofitting of adobe construction. It offers a complete review of the latest research developments, and hence the relevance of the field. The book starts with an introductory discussion on adobe construction and its use throughout the world over time, highlighting characteristics and performance of adobe masonry structures as well as different contributions for cultural heritage conservation (Chapter 1). Then, the seismic behaviour of adobe masonry buildings is addressed, including examples of real performance during recent earthquakes (Chapter 2). In the following chapters, key research investigations on seismic response assessment and retrofitting of adobe constructions are reviewed. The review deals with the following issues: mechanical characterization of adobe bricks and adobe masonry (Chapters 3 and 4); quasi-static and shaking table testing of adobe masonry walls and structures (Chapters 5 and 6); non-destructive and minor-destructive testing for characterization of adobe constructions (Chapter 7); seismic strengthening techniques for adobe constructions (Chapter 8); and numerical modelling of adobe structures (Chapter 9). The book ends with Chapter 10, where some general conclusions are drawn and research needs are identified. Each chapter is co-authored by a group of experts from different countries to comprehensively address all issues of adobe constructions from a worldwide perspective. The information covered in this book is fundamental to support civil engineers and architects in the rehabilitation and strengthening of existing adobe constructions and also in the design of new adobe buildings. This information is also of interest to researchers, by providing a summary of existing research and suggesting possible directions for future research efforts.
Advances in Rock-Support and Geotechnical Engineering brings together the latest research results regarding the theory of rock mechanics, its analytical methods and innovative technologies, and its applications in practical engineering. This book is divided into six sections, rock tests, rock bolting, grouted anchor, tunneling engineering, slope engineering, and mining engineering. Coverage includes fracture hinged arching process and instability characteristics of rock plates, failure modes of rock bolting, scale effects, and loading transfer mechanism of the grouted anchor. Also covered are recent innovations and applications in tunneling engineering, slope engineering, and mining engineering. This book provides innovative, practical, and rich content that can be used as a valuable reference for researchers undertaking tunneling engineering, slope engineering, mining engineering, and rock mechanics, and for onsite technical personnel and teachers and students studying the topics in related universities.
Pile Design and Construction Rules of Thumb presents Geotechnical and Civil Engineers a comprehensive coverage of Pile Foundation related theory and practice. Based on the author's experience as a PE, the book brings concise theory and extensive calculations, examples and case studies that can be easily applied by professional in their day-to-day challenges. In its first part, the book covers the fundamentals of Pile Selection: Soil investigation, condition, pile types and how to choose them. In the second part it addresses the Design of Pile Foundations, including different types of soils, pile groups, pile settlement and pile design in rock. Next, the most extensive part covers Design Strategies and contains chapters on loading analysis, load distribution, negative skin friction, design for expansive soils, wave equation analysis, batter piles, seismic analysis and the use of softwares for design aid. The fourth part covers Construction Methods including hammers, Inspection, cost estimation, load tests, offshore piling, beams and caps. In this new and updated edition the author has incorporated new pile designs such as helical, composite, wind turbine monopiles, and spiral coil energy piles. All calculations have been updated to most current materials characteristics and designs available in the market. Also, new chapters on negative skin friction, pile driving, and pile load testing have been added. Practicing Geotechnical, and Civil Engineers will find in this book an excellent handbook for frequent consult, benefiting from the clear and direct calculations, examples, and cases. Civil Engineering preparing for PE exams may benefit from the extensive coverage of the subject.
This book discusses bulk solids that derive their mechanical properties not from those of their base materials, but from their designed microstructures. Focusing on the negative mechanical properties, it addresses topics that reveal the counter-intuitive nature of solids, specifically the negativity of properties that are commonly positive, such as negative bulk modulus, negative compressibility, negative hygroexpansion, negative thermal expansion, negative stiffness phase, and negative Poisson's ratio. These topics are significant not only due to the curiosity they have sparked, but also because of the possibility of designing materials and structures that can behave in ways that are not normally expected in conventional solids, and as such, of materials that can outperform solids and structures made from conventional materials. The book includes illustrations to facilitate learning, and, where appropriate, reference tables. The presentation is didactic, starting with simple cases, followed by increasingly complex ones. It provides a solid foundation for graduate students, and a valuable resource for practicing materials engineers seeking to develop novel materials through the judicious design of microstructures and their corresponding mechanisms.
Sustainability of Construction Materials, Second Edition, explores an increasingly important aspect of construction. In recent years, serious consideration has been given to environmental and societal issues in the manufacturing, use, disposal, and recycling of construction materials. This book provides comprehensive and detailed analysis of the sustainability issues associated with these materials, mainly in relation to the constituent materials, processing, recycling, and lifecycle environmental impacts. The contents of each chapter reflect the individual aspects of the material that affect sustainability, such as the preservation and repair of timber, the use of cement replacements in concrete, the prevention and control of metal corrosion and the crucial role of adhesives in wood products.
Rock Mechanics and Engineering Geology in Volcanic Fields includes keynote lectures and papers from the 5th International Workshop on Rock Mechanics and Engineering Geology in Volcanic Fields (RMEGV2021, Fukuoka, Japan, 9-10 September 2021). This book deals with challenging studies related to solving engineering issues around volcanic fields, including: Volcanic geology, disasters and their mitigation Resources and energy in volcanic fields Mechanical behavior of volcanic rocks and soils Groundwater and environmental problems in volcanic fields Geotechnical engineering in volcanic fields Rock Mechanics and Engineering Geology in Volcanic Fields is of great interest to civil engineers and engineering geologists working in the areas of rock and soil mechanics, geotechnical engineering, geothermal energy, engineering geology, and environmental science.
Rock Mechanics and Engineering Geology in Volcanic Fields includes keynote lectures and papers from the 5th International Workshop on Rock Mechanics and Engineering Geology in Volcanic Fields (RMEGV2021, Fukuoka, Japan, 9-10 September 2021). This book deals with challenging studies related to solving engineering issues around volcanic fields, including: Volcanic geology, disasters and their mitigation Resources and energy in volcanic fields Mechanical behavior of volcanic rocks and soils Groundwater and environmental problems in volcanic fields Geotechnical engineering in volcanic fields Rock Mechanics and Engineering Geology in Volcanic Fields is of great interest to civil engineers and engineering geologists working in the areas of rock and soil mechanics, geotechnical engineering, geothermal energy, engineering geology, and environmental science.
The significant increase in the use of composite materials in all phases of structures, from spacecraft to marine vessels, from bridges and domes on civil buildings to sporting goods, has called for the development of rigorous mathematical methods capable of modelling, designing and optimizing composites under any given set of conditions. This book provides solutions to many problems in the analysis of the effective and local properties of composite structures, as well as to problems of their design and optimization on account of strength, stiffness and weight minimization requirements. The numerous results are presented in the form of analytical formulas or numerical algorithms. Programs providing numerical solutions to many engineering analysis, design and optimization problems for the composite and reinforced structures, including fibre-reinforced materials, laminated and angle-ply shells and plates, ribbed, wafer and honeycomb-like composite shells and plates, are available on the Internet
Disaster Resilient Cities: Concepts and Practical Examples discusses natural disasters, their complexity, and the exploration of different ways of thinking regarding the resilience of structures. The book provides a blueprint for structural designers to better prepare structures for all types of natural hazards during the design stage. Brief and readable, this book analyzes various examples of disaster damage from earthquakes, tsunamis, and floods, together with their causal mechanisms. Practical methods to plan and design structures based on their regions, cities, as well as the particular countermeasures are also included for study.
Multiscale Structural Topology Optimization discusses the development of a multiscale design framework for topology optimization of multiscale nonlinear structures. With the intention to alleviate the heavy computational burden of the design framework, the authors present a POD-based adaptive surrogate model for the RVE solutions at the microscopic scale and make a step further towards the design of multiscale elastoviscoplastic structures. Various optimization methods for structural size, shape, and topology designs have been developed and widely employed in engineering applications. Topology optimization has been recognized as one of the most effective tools for least weight and performance design, especially in aeronautics and aerospace engineering. This book focuses on the simultaneous design of both macroscopic structure and microscopic materials. In this model, the material microstructures are optimized in response to the macroscopic solution, which results in the nonlinearity of the equilibrium problem of the interface of the two scales. The authors include a reduce database model from a set of numerical experiments in the space of effective strain.
At first glance, roads seem like the simplest possible geotechnical structures. However, analysis of these structures runs up against complexities related to the intense stresses experienced by road surfaces, their intense interaction with climate, and the complicated behavior of the materials used in road construction. Modern mechanistic approaches to road design provide the tools capable of developing new technical solutions. However, use of these approaches requires deep understanding of the behavior of constituent materials and their interaction with water and heat which has recently been acquired thanks to advances in geotechnical engineering. The author comprehensively describes and explains these advances and their use in road engineering in the two-volume set Geotechnics of Roads, compiling information that had hitherto only been available in numerous research papers. Geotechnics of Roads: Fundamentals presents stresses and strains in road structures, water and heat migration within and between layers of road materials, and the effects of water on the strength and stiffness of those materials. It includes a deep analysis of soil compaction, one of the most important issues in road construction. Compaction accounts for only a small proportion of a construction budget but its effects on the long-term performance of a road are decisive. In addition, the book describes methodologies for nondestructive road evaluation including analysis of continuous compaction control, a powerful technique for real-time quality control of road structures. This unique book will be of value to civil, structural and geotechnical engineers worldwide.
1) Includes exemplary MATLAB codes 2) Provides a comprehensive foundation in Fourier methods, essential for a mathematical approach to engineering 3) Applies MFS to hot topics in the field: multi-domain, multi- physics, and multi-scale characteristics 4) Applies Fourier method to structural vibrations, acoustics and vibro-acoustic 5) Aids engineers in solving boundary value problems and differential equations
Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master's degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges the information gap between fire safety engineers, structural engineers and building inspectors, and will be of significant interest to architects, code officials, building designers and fire fighters. Dr. Guoqiang Li is a Professor at the College of Civil Engineering of Tongji University, China; Dr. Peijun Wang is an Associate Professor at the School of Civil Engineering of Shandong University, China.
Advances in Civil Engineering: Structural Seismic Resistance, Monitoring and Detection is a collection of papers resulting from the conference on Structural Seismic Resistance, Monitoring and Detection (SSRMD 2022), Harbin, China, 21-23 January, 2022. According to the development of many new seismic theories, technologies and products, the primary goal of this conference is to promote research and developmental activities in structural seismic resistance, monitoring and detection. Moreover, another goal is to promote scientific information interchange between scholars from the top universities, business associations, research centers and high-tech enterprises working all around the world. The conference conducted in-depth exchanges and discussions on relevant topics such as structural seismic resistance, monitoring and detection, aiming to provide an academic and technical communication platform for scholars and engineers engaged in scientific research and engineering practice in the field of civil engineering, seismic resistance and engineering entity structure testing. By sharing the research status of scientific research achievements and cutting-edge technologies, it helps scholars and engineers all over the world to comprehend the academic development trend and broaden research ideas. So as to strengthen international academic research, academic topics exchange and discussion, and promoting the industrialization cooperation of academic achievements.
This volume gathers the latest advances, innovations, and applications in the field of mining, geology and geo-spatial technologies, as presented by leading researchers and engineers at the International Conference on Innovations for Sustainable and Responsible Mining (ISRM), held in Hanoi, Vietnam on October 15-17 2020. The contributions cover a diverse range of topics, including mining technology, drilling and blasting engineering, tunneling and geotechnical applications, mineral processing, mine management and economy, environmental risk assessment and management, mining and local development, mined land rehabilitation, water management and hydrogeology, regional Geology and tectonics, spatial engineering for monitoring natural resources and environment change, GIS and remote sensing for natural disaster monitoring, risk mapping and revisualization, natural resources monitoring and management, mine occupational safety and health. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations. |
You may like...
90 Rules For Entrepreneurs - Your Guide…
Marnus Broodryk
Paperback
(4)
The LGBTQ+ Comics Studies Reader…
Alison Halsall, Jonathan Warren
Hardcover
R3,201
Discovery Miles 32 010
Enterprise Big Data Engineering…
Martin Atzmueller, Samia Oussena, …
Hardcover
R5,155
Discovery Miles 51 550
Competence in High Performance Computing…
Christian Bischof, Heinz-Gerd Hegering, …
Hardcover
R2,668
Discovery Miles 26 680
Research Anthology on Recent Trends…
Information Reso Management Association
Hardcover
R9,795
Discovery Miles 97 950
|