![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology
Hydrogen Fuel Cells for Road Vehicles addresses the main issues related to the application of hydrogen fuel cell technology in the road transportation sector. A preliminary treatment is given on fuel resources and atmospheric pollution concerns which are closely related to the current technology (internal combustion engine) used for moving people and goods. The authors deal, in particular, with the problems that can hinder a widespread hydrogen market (production, storage and distribution), as well as giving an analysis of fuel cell technologies available for utilization of this energy carrier in the automotive field. Hydrogen Fuel Cells for Road Vehicles also examines the concerns faced during the design and realization of a PEM fuel cell system with optimal size and efficiency, evidencing the impact of the individual auxiliary components on energy losses and dynamic stack performance. The book ends with the analysis of two practical case studies on fuel cell propulsion systems. Hydrogen Fuel Cells for Road Vehicles is a useful text for researchers, professionals and advanced students in the fields of automotive and environmental engineering.
This book covers the diagnosis and assessment of the various faults which can occur in a three phase induction motor, namely rotor broken-bar faults, rotor-mass unbalance faults, stator winding faults, single phasing faults and crawling. Following a brief introduction, the second chapter describes the construction and operation of an induction motor, then reviews the range of known motor faults, some existing techniques for fault analysis, and some useful signal processing techniques. It includes an extensive literature survey to establish the research trends in induction motor fault analysis. Chapters three to seven describe the assessment of each of the five primary fault types. In the third chapter the rotor broken-bar fault is discussed and then two methods of diagnosis are described; (i) diagnosis of the fault through Radar analysis of stator current Concordia and (ii) diagnosis through envelope analysis of motor startup current using Hilbert and Wavelet Transforms. In chapter four, rotor-mass unbalance faults are assessed, and diagnosis of both transient and steady state stator current has been analyzed using different techniques. If both rotor broken-bar and rotor-mass unbalance faults occur simultaneously then for identification an algorithm is provided in this chapter. Chapter five considers stator winding faults and five different analysis techniques, chapter six covers diagnosis of single phasing faults, and chapter seven describes crawling and its diagnosis. Finally, chapter eight focuses on fault assessment, and presents a summary of the book together with a discussion of prospects for future research on fault diagnosis.
Stress, Vibration, and Wave Analysis in Aerospace Composites: SHM and NDE Applications presents a unified approach to studying and understanding stress, vibrations and waves in composite materials used in aerospace applications. Combining topics that are typically found across an array of various sources, the book starts by looking at the properties of various composite materials, progresses to coverage of an analysis of stress, vibration and waves and then concludes with a discussion of various structural health monitoring (SHM) and nondestructive evaluation (NDE) techniques and applications based on the analysis developed earlier in the book. Every chapter of the book contains a variety of worked-out examples to illustrate and tie together underlying theory and specific applications. The MATLAB code used to generate these examples is available on the book's companion website, as are solution documents and additional MATLAB code for problems and exercises featured in each chapter.
This is an edited collection by world-class experts, from diverse fields, focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. The book presents developments on road safety, in-vehicle technologies and state-of-the art systems. Includes coverage of DSP technologies in adaptive automobiles, algorithms and evaluation of in-car communication systems, driver-status monitoring and stress detection, in-vehicle dialogue systems and human-machine interfaces, challenges in video and audio processing for in-vehicle products, multi-sensor fusion for driver identification and vehicle to infrastructure wireless technologies.
"Proceedings of the FISITA 2012 World Automotive Congress" are
selected from nearly 2,000 papers submitted to the 34th FISITA
World Automotive Congress, which is held by Society of Automotive
Engineers of China (SAE-China ) and the International Federation of
Automotive Engineering Societies (FISITA). This proceedings focus
on solutions for sustainable mobility in all areas of passenger
car, truck and bus transportation. Volume 13: Noise, Vibration and
Harshness (NVH) focuses on:
This book reflects the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation, which covers abundant state-of-the-art research theories and ideas. As a vital field of research that is highly relevant to current developments in a number of technological domains, the subjects it covered include intelligent computing, information processing, Communication Technology, Automatic Control, etc. The objective of the proceedings is to provide a major interdisciplinary forum for researchers, engineers, academicians as well as industrial professionals to present the most innovative research and development in the field of rail transportation electrical and information technologies. Engineers and researchers in academia, industry, and the government will also explore an insight view of the solutions that combine ideas from multiple disciplines in this field. The volumes serve as an excellent reference work for researchers and graduate students working on rail transportation, electrical and information technologies.
Accessible, friendly style, accentuating real-life experiences and ground-level practicalities for those already working within or hoping for a career in the business of air logistics. Packed with personal reports from global industry leaders for revealing insights into the industry and a rounded understanding. Addresses the reality of the impacts caused by the COVID-19 pandemic, and adds new content focusing on security and crime, the role of airports and road feeder services, and the range of typical air cargo products.
"Vehicle Dynamics and Control" provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicles. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability control has been enhanced. The use of feedback control systems on automobiles is growing rapidly. This book is intended to serve as a useful resource to researchers who work on the development of such control systems, both in the automotive industry and at universities. The book can also serve as a textbook for a graduate level course on Vehicle Dynamics and Control.
This interdisciplinary thesis involves the design and analysis of coordination algorithms on networks, identification of dynamic networks and estimation on networks with random geometries with implications for networks that support the operation of dynamic systems, e.g., formations of robotic vehicles, distributed estimation via sensor networks. The results have ramifications for fault detection and isolation of large-scale networked systems and optimization models and algorithms for next generation aircraft power systems. The author finds novel applications of the methodology in energy systems, such as residential and industrial smart energy management systems.
Though usually regarded as a footnote in automotive history, Maxwell Motor was one of the leading automobile producers in the United States during the first quarter of the twentieth century, and its cars offered several innovations to buyers of the time. For instance, Maxwell's was the first popular car with its engine in front instead of under the body, the first to be designed with three-point suspension and shaft drive, and one of the earliest cars to feature thermo-syphon cooling. In Maxwell Motor and the Making of the Chrysler Corporation, Anthony J. Yanik examines the machines, the process, and the men behind Maxwell, describing both the vehicle engineering and the backroom wheeling and dealing that characterized the emergence and disappearance of the early auto companies. In this detailed history, Yanik charts the company's evolution through the early Maxwell-Briscoe years, 1903-1912; the Maxwell Motor Company years, 1913-1920; and finally the Maxwell Motor Corporation years, 1921-1925. He considers the influential leaders, including Jonathan Maxwell, Benjamin Briscoe, Walter Flanders, and Walter P. Chrysler, who executed the business decisions and corporate mergers that shaped each tumultuous era, concluding with Chrysler's eventual deal to transfer all Maxwell assets to form a new Chrysler Corporation in 1925. Yanik also discusses the aftermath of Maxwell's dissolution and the fate of its famous corporate leaders. For this study, Yanik draws on a wealth of primary sources including old automotive trade journals, the writings of Ben Briscoe and William Durant, and company records in the Chrysler archives. Maxwell Motor and the Making of the Chrysler Corporation fills a gap in existing automotive scholarship and proves that the Maxwell story is an excellent resource for documenting the development of the automobile industry in the early twentieth century. Auto buffs and local historians will appreciate Yanik's thorough and engaging look at this slice of automotive history.
This comprehensive monograph addresses crucial issues in the protection of railway systems, with the objective of enhancing the understanding of railway infrastructure security. Based on analyses by academics, technology providers and railway operators, it explains how to assess terrorist and criminal threats, design countermeasures, and implement effective security strategies. In so doing, it draws upon a range of experiences from different countries in Europe and beyond. The book is the first to be devoted entirely to this subject. It will serve as a timely reminder of the attractiveness of the railway infrastructure system as a target for criminals and terrorists and, more importantly, as a valuable resource for stakeholders and professionals in the railway security field aiming to develop effective security based on a mix of methodological, technological and organizational tools. Besides researchers and decision makers in the field, the book will appeal to students interested in critical infrastructure protection.
Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data have on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.
Fossil fuel prices continue to rise and, at the same time, environmental policies are demanding a reduction in greenhouse gases and toxic emissions. A coherent energy strategy is needed: one that addresses both energy supply and demand and takes into account the whole energy lifecycle, from fuel production to the end-users of energy systems. This book examines hydrogen energy technologies and infrastructure development.
In April 1990 a conference was held at the Cracow Institute of Technology, Cracow, Poland. The title of that conference was "Residual Stresses in Rails - Effects on Rail Integrity and Railroad Economics" and its themes were the measurement and prediction of residual stresses in rails, but, as the sub-title suggests, the intention was also to provide a link between research and its application to the practical railway world. At the Cracow conference there were 40 participants with 5 railways and 5 rail makers being represented and 25 papers were given. The Cracow conference was a success, and by March 1991 its off-spring, "The International Conference on Rail Quality and Maintenance for Modern Railway Operations", was conceived and birth was ultimately given in June 1992 at the Technical University, Delft. It turned out to be some baby, with 112 delegates from 24 countries taking part! As with its predecessor, the conference was to provide a forum for the exchange of ideas between research investigators, rail makers and railway engineers. A cursory examination of the list of participants suggests that about 57% were from the railway industry, 34% from universities and other research institutions and 9% from the steel industry. Bearing in mind that some of the railway industry participants were from their respective research and development organisations the balance of interests was about right.
This is the first authored English book completely focused on global navigation satellite system reflectometry (GNSS-R). It consists of two main parts: the fundamental theory; and major applications, which include ocean altimetry, sea surface wind speed retrieval, snow depth measurement, soil moisture measurement, tsunami detection and sea ice detection. Striking a healthy balance between theory and practice, and featuring in-depth studies and extensive experimental results, the book introduces beginners to the fundamentals, while preparing experienced researchers to pursue advanced investigations and applications in GNSS-R.
JAXA 's Kaguya mission was successfully launched to the Moon on September 14, 2007 reaching its nominal 100 km circular orbit on October 19 after releasing two subsatellites Okina and Ouna in elliptical orbits with perilunes of 100 km and apolunes of 2400 and 800 km respectively. Observations were obtained for 10 months during the nominal mission beginning in mid-December 2007 followed by 8 month extended mission where data were obtained in lower orbits. The articles in this book were written by experts in each of the scientific areas of the Kaguya mission, and describe both the mission and the individual scientific investigations, including their objectives, the specifications of the instruments, their calibrations and initial results. This book is essential reading to all potential users of the Kaguya data and those interested in the scientific results of the mission, the properties of the lunar surface and crust and planetary exploration in general.
The central premise of Design for Transport is that the designer's role is to approach design for transport from the point of view of the user. People have a collection of wants and needs and a significant proportion of them are to do with their requirements for mobility. The authors show how creative designers can take a user-focused approach for a wide range of types of transport products and systems. In so doing their starting point is one of creative dissatisfaction with what is currently available, and their specialist capability is in imagining and developing new solutions which respond to that opportunity. How this is tackled varies depending on the context, and the variety of solutions produced reflects the different aspirations and needs of the people they are designing for. The chapters cover user needs and transport, design and the transport system, transport design case studies, and the case for the automobile. A conclusion briefly signals what the future for transport design might be. Lavishly illustrated throughout in four-colour, Design for Transport, is an imaginative and rigorous guide to how designers can take a user-centred and socially responsible approach to tackling a range of types of transport, from systems to products and from bicycles to automobiles, demonstrating a rich array of solutions through case studies.
'Commerce In Space' discusses opportunities in the development of policies to use space technology for the improvement of life on earth.
For more than a decade this annual volume has provided an authoritative summary of all the developments in the world's navies and their ships in the previous twelve months. It combines regional surveys with major articles on important new warships and looks at wider issues of significance to navies such as aviation and weaponry. The contributors come from around the globe and as well as providing a balanced picture of naval developments, they interpret their significance and explain their context. As well as its regular regional reviews, a major feature of the 2025 edition is an analysis of the naval lessons of the Russo-Ukrainian war, while this year’s Significant Ships describe in depth the U.S. John Lewis class AORs, French Suffren class SSNs and Italian Paolo Thaon di Revel class offshore patrol vessels. The regular Regional Reviews summarize developments in the world’s naval forces but also spotlight the lesser-known fleets of Portugal and the Philippines. In the Technology section, David Hobbs provides his broad-ranging annual survey of naval aviation. Norman Friedman outlines trends in naval technology since the Cold War, while Richard Scott analyses the AN/SPY-6 radar, and the editor looks at the challenges surrounding the delivery of new Royal Navy warships. Now firmly established as the only annual naval overview of its type in the world, the Seaforth World Naval Review is essential reading for professional and enthusiast alike. It takes the reader to the heart of contemporary maritime affairs.
This book discusses the recent advances in aircraft design methodologies. It provides an overview of topics such as shape optimization, robust design and aeroelasticity, focusing on fluid-structure numerical methodologies to address static and dynamic aeroelastic problems. It demonstrates that the capability to evaluate the interaction between aerodynamics, inertia and elastic forces is important to avoid drag penalties, control system efficiency loss and generation of potentially dangerous phenomena, such as divergence, control reversal and flutter. The book particularly highlights the advances in "high fidelity" CFD-CSM coupling, describing the latest experimental research to validate the numerical fluid-structure interaction analysis methodologies resulting from the EU-funded RBF4AERO and RIBES projects.
Driving Simulators for the Evaluation of Human-Machine Interfaces in Assisted and Automated Vehicles is a concise reference work on driving simulators, which conveys the technology behind simulator systems used to test driver assistance systems and automated vehicles, including electric vehicles. Coverage includes architecture, computer graphics, evaluation parameters and applied examples. A driving simulator is a device that has the function of presenting similar visual, auditory and force perceptions to those experienced during driving, creating the illusion that the driver is driving an actual car. The advantage of tests using a driving simulator is that it can reproduce dangerous traffic situations and tests safely. Driving simulators are also valuable in research and development into intelligent driving systems, allowing for testing and evaluation in a simulation environment rather than on the road. With its concise selection of relevant material and applied focus, this book will be of use to research and development professionals in industry and academic researchers whose work involves automotive systems and technologies in general, and particularly those working on driving simulators and automated driving.
The Commission on Accreditation of Medical Transport Systems (CAMTS) has been accrediting air and ground transport services since 1991. One of the most significant needs the Commission has recognized is to assist transport services in creating a culture that supports safety and quality for both crews and patients. Most of the helicopter EMS (emergency medical service) accidents and many ground ambulance accidents can be attributed to human factors and systems designs that lead to poor decision-making. Management commitment is vital to create and maintain a culture that supports risk assessment, accountability, professionalism and organizational dynamics. This reference book has been created by CAMTS to address this need directly and comprehensively. It offers a groundbreaking collection of expert insights and practical solutions that can be used by EMS, Fire and Rescue, public and private services, and professional emergency and transport professionals worldwide. Quoting from the foreword written by the late Robert L. Helmreich, Professor Emeritus of Psychology at The University of Texas Human Factors Research Project, 'This is an important book which should be required reading for everyone involved in patient transport, from managers and dispatchers to those at the sharp end... The experienced and able authors and editors of this work use culture as the overarching concept needed to maximize safety while delivering patients expeditiously.'
This book gathers contributions to the 20th biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. Though the book's primary emphasis is on the aerospace context, it also addresses further important applications, e.g. in ground transportation and energy.
Sliding-mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics showing the advantages of sliding modes. The book introduces the theory of fuel cells and sliding-mode control. It contextualises PEMFCs both in terms of their development and within the hydrogen economy and today's energy production situation as a whole. It then discusses fuel-cell operation principles, the mathematical background of high-order sliding-mode control and to a feasibility study for the use of sliding modes in the control of an automotive fuel stack. Part II presents experimental results of sliding-mode-control application to laboratory fuel cells and deals with subsystem-based modelling, detailed design, and observability and controllability. Simulation results are contrasted with empirical data and performance, robustness and implementation issues are treated in depth. Possibilities for future research are also laid out.
The interest in the field of active flow control (AFC) is steadily increasing. In - cent years the number of conferences and special sessions devoted to AFC org- ized by various institutions around the world continuously rises. New advanced courses for AFC are offered by the American Institute of Aeronautics and Ast- nautics (AIAA), the European Research Community on Flow, Turbulence and Combustion (ERCOFTAC), the International Centre for Mechanical Sciences (CISM), the von Karman Institute for Fluid Dynamics (VKI), to name just a few. New books on AFC are published by prominent colleagues of our field and even a new periodical, the 'International Journal of Flow Control', appeared. Despite these many activities in AFC it was felt that a follow-up of the highly successful 'ACTIVE FLOW CONTROL' Conference held in Berlin in 2006 was appropriate. As in 2006, 'ACTIVE FLOW CONTROL II' consisted only of invited lectures. To sti- late multidisciplinary discussions between experimental, theoretical and numerical fluid dynamics, aerodynamics, turbomachinary, mathematics, control engineering, metrology and computer science parallel sessions were excluded. Unfortunately, not all of the presented papers made it into this volume. As the preparation and printing of a book takes time and as this volume should be available at the conf- ence, the Local Organizing Committee had to set up a very ambitious time sch- ule which could not be met by all contributors. |
![]() ![]() You may like...
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
![]()
|