![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology
a short and accessible introduction on AI and Cars written by leading experts
A History Today Book of the Year A world-renowned astronomer and an esteemed science writer make the provocative argument for space exploration without astronauts. Human journeys into space fill us with wonder. But the thrill of space travel for astronauts comes at enormous expense and is fraught with peril. As our robot explorers grow more competent, governments and corporations must ask, does our desire to send astronauts to the Moon and Mars justify the cost and danger? Donald Goldsmith and Martin Rees believe that beyond low-Earth orbit, space exploration should proceed without humans. In The End of Astronauts, Goldsmith and Rees weigh the benefits and risks of human exploration across the solar system. In space humans require air, food, and water, along with protection from potentially deadly radiation and high-energy particles, at a cost of more than ten times that of robotic exploration. Meanwhile, automated explorers have demonstrated the ability to investigate planetary surfaces efficiently and effectively, operating autonomously or under direction from Earth. Although Goldsmith and Rees are alert to the limits of artificial intelligence, they know that our robots steadily improve, while our bodies do not. Today a robot cannot equal a geologist's expertise, but by the time we land a geologist on Mars, this advantage will diminish significantly. Decades of research and experience, together with interviews with scientific authorities and former astronauts, offer convincing arguments that robots represent the future of space exploration. The End of Astronauts also examines how spacefaring AI might be regulated as corporations race to privatize the stars. We may eventually decide that humans belong in space despite the dangers and expense, but their paths will follow routes set by robots.
Illustrated with detailed artworks of modern military aircraft and their markings with exhaustive captions and specifications, Technical Guide: Modern Military Aircraft is an extensively researched review of the military aircraft deployed by the world's air forces in recent conflicts in the Balkans, the Caucasus, Iraq, Afghanistan, Syria and elsewhere. Organised alphabetically by manufacturer, this book includes every type of aircraft in use in the world today, from the F-22 Raptor through the Dassault Mirage 2000 to the MiG-29 and Su-33. The book includes multirole fighters, ground attack aircraft, high-level bombers, reconnaissance aircraft, carrier aircraft, and unmanned drones. The guide is illustrated with profile artworks, three-views, and special cutaway artworks of the more famous aircraft in service, such as the F-15E Strike Eagle, Sukhoi Su-27 and Eurofighter Typhoon. Illustrated with more than 110 artworks, Technical Guide: Modern Military Aircraft is an essential reference guide for modellers and enthusiasts with an interest in modern military aircraft.
With the advent of intelligent vehicle (IV) systems, the age of the electronic co-pilot in road vehicles is upon us. These cutting-edge systems can monitor nearby traffic, sense a vehicle's movement, and even alert the driver to hit the brakes to avoid a collision. This groundbreaking resource offers professionals a comprehensive overview of IV systems aimed at providing enhanced safety, greater productivity, and less stress for drivers. Rather than bogging down readers with difficult technical discourse, this easy-to-understand book presents a conceptual and realistic view of how IV systems work and the issues involved with their introduction into road vehicles. Helping engineers apply their skills to this emerging field, this practical reference offers a thorough understanding of how electronics and electronic systems must work within automobiles, heavy trucks, and buses. The book examines real-world products, along with practical issues, including cost, market aspects, driver interface, and user acceptance.
During the last decade, rapid advances have been made in the area of flow analysis in the components of gas turbine engines. Improving the design methods of turbomachine blade rows and under standing of the flow phenomena through them, has become one of the major research topics for aE'rodynamists. This increase of research efforts is due to the need of reducing the weight and fuel consumption of turbojet engines for the same thrust levels. One way of achieving this is to design more efficient components working at high local velocities. Design efforts can lead to desired results only if the details of flow through the blade rows are understood. It is also known that for aircraft propulsion systems development, time and cost can be reduced significantly if the perf ormance can be predicted with conf idence and enough precision. This. generally iK: eds sophisticated two or three dimensional computer codes that can give enough information for design and performance prediction. In the recent years, designers also started to use these sophisticated codes more and more with confidence, in connection with computer aided design and manufacturing techniques. On the other hand, the modelling and solution of flow and the meast"
MECHANICS OF AIRCRAFT STRUCTURES Explore the most up-to-date overview of the foundations of aircraft structures combined with a review of new aircraft materials The newly revised Third Edition of Mechanics of Aircraft Structures delivers a combination of the fundamentals of aircraft structure with an overview of new materials in the industry and a collection of rigorous analysis tools into a single one-stop resource. Perfect for a one-semester introductory course in structural mechanics and aerospace engineering, the distinguished authors have created a textbook that is also ideal for mechanical or aerospace engineers who wish to stay updated on recent advances in the industry. The new edition contains new problems and worked examples in each chapter and improves student accessibility. A new chapter on aircraft loads and new material on elasticity and structural idealization form part of the expanded content in the book. Readers will also benefit from the inclusion of: A thorough introduction to the characteristics of aircraft structures and materials, including the different types of aircraft structures and their basic structural elements An exploration of load on aircraft structures, including loads on wing, fuselage, landing gear, and stabilizer structures An examination of the concept of elasticity, including the concepts of displacement, strain, and stress, and the equations of equilibrium in a nonuniform stress field A treatment of the concept of torsion Perfect for senior undergraduate and graduate students in aerospace engineering, Mechanics of Aircraft Structures will also earn a place in the libraries of aerospace engineers seeking a one-stop reference to solidify their understanding of the fundamentals of aircraft structures and discover an overview of new materials in the field.
The Total Car Care series continues to lead all other do-it-yourself automotive repair manuals. This series offers do-it-yourselfers of all levels TOTAL maintenance, service and repair information in an easy-to-use format. Each manual covers all makes format. Each manual covers all makes and models, unless otherwise indicated.: Based on actual teardowns: Simple step-by-step procedures for engine overhaul, chassis electrical drive train, suspension, steering and more: Trouble codes: Electronic engine controls
This book deals with the computational analysis of thin-walled structures such as aircraft, ships, and containment vessels. Building on the author's earlier book Static and Dynamic Analysis of Structures, it shows how to use computational methods to tackle some of the fundamental problems of structural mechanics, with particular emphasis on nonlinear phenomena. Where the earlier book dealt with linear systems, the central theme running through this volume is the notion that unstable equilibria are associated with motions and large displacements and therefore require a full nonlinear analysis. The discussion begins with an overview of the basic mechanics of deformable bodies, including variational formulations, and then considers the large deflection behavior of shell and frame structures using a finite-element analysis. The second part of the book begins with a summary of linear vibrations of structures, including an introduction to modal analysis; it continues with computational formulations of nonlinear dynamic analyses of structures and refines the concept of dynamic equilibrium in the context of large deflections. The book concludes with a discussion of stability, including the difficult problem of stability of motions in the large. By describing the methods on which commercial software pakckages are based, this book allows an engineer to evaluate the results these computations produce. It therefore should be useful to practicing engineers and graduate students.
One of the major challenges of modern space mission design is the orbital mechanics -- determining how to get a spacecraft to its destination using a limited amount of propellant. Recent misions such as Voyager and Galileo required gravity assist maneuvers at several planets to accomplish theiir objectives. Today's students of aerospace engineering face the challenge of calculating these types of complex spacecraft trajectories. This classroom-tested textbook takes its title from an elective course which has been taught to senior undergraduates and first-year graduate students for the past 22 years. The subject of orbital mechanics is developed starting from the first principles, using Newton's laws of motion and the law of gravitation to prove Kepler's empirical laws of planetary motion. Unlike many texts the authors also use first principles to derive other important results including Kepler's equation, Lambert's time-of-flight equation, the rocket equation, the Hill-Clohessy-Wiltshire equations of relative motion, Gauss' equations for the variation of the elements, and the Gauss and Laplace methods of orbit determination. The subject of orbit transfer receives special attention. Optimal orbit transfers such as the Hohmann transfer, minimum-fuel transfers using more than two impulses, and non-coplanar orbital transfer are discussed. Patched-conic interplanetary trajectories including gravity-assist maneuvers are the subject of an entire chapter and are particularly relevent to modern space missions.
The author's approach is one of continuum models of the aerodynamic flow interacting with a flexible structure whose behavior is governed by partial differential equations. Both linear and nonlinear models are considered although much of the book is concerned with the former while keeping the latter clearly in view. A complete chapter is also devoted to nonlinear theory. The author has provided new insights into the classical inviscid aerodynamics and raises novel and interesting questions on fundamental issues that have too often been neglected or forgotten in the development of the early history of the subject. The author contrasts his approach with discrete models for the unsteady aerodynamic flow and the finite element model for the structure. Much of the aeroelasticity has been developed with applications formerly inmind because of its enormous consequences for the safety of aircraft. Aeroelastic instabilities such as divergence and flutter and aeroelastic responses to gusts can pose a significant hazard to the aircraft and impact its performance. Yet, it is now recognized that there are many other physical phenomena that have similar characteristics ranging from flows around flexible tall buildings and long span bridges, alternate energy sources such as electric power generation by smart structures to flows internal to the human body. From the foreword: "For the theorist and applied mathematician who wishes an introduction to this fascinating subject as well as for the experienced aeroelastician who is open to new challenges and a fresh viewpoint, this book and its author have much to offer the reader." Earl Dowell, Duke University, USA "
This book provides an extensive overview of the protection of cultural heritages sites on the Moon (humanity's lunar heritage) and the various threats they face. First of all, the international legal framework, especially the relevant space treaties are analyzed in terms of how they protect cultural heritages sites on the Moon. In turn, the book explores key aspects like the application of customary law, the UNESCO World Heritage Convention, or the Underwater Convention, and the possibility of adding these sites to UNESCO's World Heritage list. The book subsequently addresses the question of how to define culture heritage sites or artifacts, in particular in view of the "Outstanding Universal Value" criterion, which is a vital aspect in order to differentiate them from space garbage or even space threats. Lastly, the book proposes and elaborates on various protection systems and multilateral protection regulations. Especially now, 50 years after the first human landing on the Moon, the book is a timely publication that will be of interest to all scholars and professionals working in the space field.
Sample Return Missions: The Last Frontier of Solar System Exploration examines the discoveries and results obtained from sample return missions of the past, present, and future. It analyses the results in the context of the current state of knowledge and their relation to the formation and evolution of planetary bodies, as well as to the available technologies and techniques. It provides detailed descriptions of experimental procedures applied to returned samples. Beginning with an overview of previous missions, Sample Return Missions then goes on to provide an overview of facilities throughout the world used to analyze the returned samples. Finally, it addresses techniques for collection, transport, and analysis of the samples, with an additional focus on lessons learned and future perspectives. Providing an in-depth examination of a variety of missions, with both scientific and engineering implications, this book is an important resource for the planetary science community, as well as the experimentalist and engineering communities.
This book presents the interdisciplinary and international "Virtual and Remote Tower" research and development work. It has been carried out since nearly twenty years with the goal of replacing the conventional aerodrome control tower by a new "Remote Tower Operation" (RTO) work environment for enhancing work efficiency and safety and reducing cost. The revolutionary human-system interface replaces the out-of-windows view by an augmented vision video panorama that allows for remote aerodrome traffic control without a physical tower building. It enables the establishment of a (multiple) remote control center (MRTO, RTC) that may serve several airports from a central location. The first (2016) edition of this book covered all aspects from preconditions over basic research and prototype development to initial validation experiments with field testing. Co-edited and -authored by DLR RTO-team members Dr. Anne Papenfuss and Joern Jakobi, this second extended edition with nearly doubled number of chapters includes further important aspects of the international follow-up work towards the RTO-deployment. Focus of the extension with new contributions from ENRI/Japan and IAA/Dublin with Cranfield University, is on MRTO, workload, implementation, and standardization. Specifically, the two revised and nine new Chapters put the focus on inclusion of augmented vision and virtual reality technologies, human-in-the-loop simulation for quantifying workload and deriving minimum (technical) requirements according to standards of the European Organization for Civil Aviation Equipment (EUROCAE), and MRTO implementation and certification. Basics of optical / video design, workload measures, and advanced psychophysical data analysis are presented in four appendices.
This book offers a comprehensive reference guide for the theory and practice of intelligent and fuzzy techniques in Aviation 4.0. It provides readers with the necessary intelligent and fuzzy tools for Aviation 4.0 when incomplete, vague, and imprecise information or insufficient data exist in hand, where classical modeling approaches cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including baggage services, catering services, check-in and boarding services, maintenance and cargo management, security, etc. To foster reader comprehension, all chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers, and postgraduate students pursuing research on Aviation 4.0. Moreover, by extending all the main aspects of Aviation 4.0 to its intelligent and fuzzy counterparts, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas, and developments.
This book brings together experts and analysts in international space policy from academia, government, and corporations, and from the technical and legal spheres. It was felt that this broad cross section of expertise would result in the miltidimensional and multidisciplinary treatment this complex issue requires. This volume provides a valuable mix of perspectives by experts examining the important issues of this new era of space exploration.
Autonomous Vehicles: Technologies, Regulations, and Societal Impacts explores both the autonomous driving concepts and the key hardware and software enablers, Artificial intelligence tools, needed infrastructure, communication protocols, and interaction with non-autonomous vehicles. It analyses the impacts of autonomous driving using a scenario-based approach to quantify the effects on the overall economy and affected sectors. The book assess from a qualitative and quantitative approach, the future of autonomous driving, and the main drivers, challenges, and barriers. The book investigates whether individuals are ready to use advanced automated driving vehicles technology, and to what extent we as a society are prepared to accept highly automated vehicles on the road. Building on the technologies, opportunities, strengths, threats, and weaknesses, Autonomous Vehicles: Technologies, Regulations, and Societal Impacts discusses the needed frameworks for automated vehicles to move inside and around cities. The book concludes with a discussion on what in applications comes next, outlining the future research needs.
This innovative monograph explores a new mathematical formalism in higher-order temporal logic for proving properties about the behavior of systems. Developed by the authors, the goal of this novel approach is to explain what occurs when multiple, distinct system components interact by using a category-theoretic description of behavior types based on sheaves. The authors demonstrate how to analyze the behaviors of elements in continuous and discrete dynamical systems so that each can be translated and compared to one another. Their temporal logic is also flexible enough that it can serve as a framework for other logics that work with similar models. The book begins with a discussion of behavior types, interval domains, and translation invariance, which serves as the groundwork for temporal type theory. From there, the authors lay out the logical preliminaries they need for their temporal modalities and explain the soundness of those logical semantics. These results are then applied to hybrid dynamical systems, differential equations, and labeled transition systems. A case study involving aircraft separation within the National Airspace System is provided to illustrate temporal type theory in action. Researchers in computer science, logic, and mathematics interested in topos-theoretic and category-theory-friendly approaches to system behavior will find this monograph to be an important resource. It can also serve as a supplemental text for a specialized graduate topics course.
Electric vehicles (EV), are being hailed as part of the solution to reducing urban air pollution and noise, and staving off climate change. Their success hinges on the availability and reliability of fast and efficient charging facilities, both stationary and in-motion. These in turn depend on appropriate integration with the grid, load and outage management, and on the mitigation of loads using renewable energy and storage. Charging management to preserve the battery will also play a key role. This book covers the latest in charging technology; stationary as well as wireless and in-motion. Grid integration, simulations, fast charging, and battery management are also addressed. The objective of this book is to provide readers with an in-depth knowledge about EV charging infrastructure, and grid integration issues and solutions. The book serves as a reference for researchers in academia and industry, covering almost every aspect of the charging and grid integration of EVs.
It is important to continue to update the use of advanced systems by promoting general awareness throughout the management, design, manufacture and operation of railways and other emerging passenger, freight and transit systems. Originating from presentations at the 17th International Conference on Railway Engineering Design and Operation, this volume contains selected research works on the topic. The included papers help to facilitate the use of advanced systems and place a key focus on the applications of computer systems in advanced railway engineering. These research studies will be of interest to all those involved in the development of railways, including managers, consultants, railway engineers, designers of advanced train control systems and computer specialists.
Rural Road Engineering in Developing Countries provides a comprehensive coverage of the planning, design, construction, and maintenance of rural roads in developing countries and emerging nations. It covers a wide range of technical and non-technical problems that may confront road engineers working in the developing world, focusing on rural roads which provide important links from villages and farms to markets and offer the public access to health, education, and other services essential for sustainable development. Most textbooks on road engineering are based on experience in industrialised countries with temperate climates or deal only with specific issues, with many aspects of the design and construction of roads in developing regions stemming from inappropriate research undertaken in Europe and the USA. These approaches are frequently unsuitable and unsustainable for rural road network environments, particularly in low to middle income countries. This book takes on board a more recent research and application focus on rural roads, integrating it for a broad range of readers to access current information on good practice for sustainable road engineering in developing countries. The book particularly suits transportation engineers, development professionals, and graduate students in civil engineering.
Recommandations relatives au transport des marchandises dangereuses des Nations Unies, et pour classer les produits chimiques qui presentent des dangers physiques conformement au Systeme general harmonise de classification et d'etiquetage des produits chimiques (SGH). En consequence, il complete egalement les reglements nationaux et internationaux qui ont ete etablis sur la base des Recommandations relatives au transport des marchandises dangereuses ou du SGH.
Man-Machine-Environment System Engineering: Proceedings of the 21st Conference on MMESE is the academic showcase of best research papers selected from more than 500 submissions each year. From this book reader will learn the best research topics and the latest development trend in MMESE design theory and other human-centered system application.MMESE focus mainly on the relationship between Man, Machine and Environment. It studies the optimum combination of man-machine-environment systems. In the system, the Man means the working people as the subject in the workplace (e.g. operator, decision-maker); the Machine means the general name of any object controlled by the Man (including tool, Machinery, Computer, system and technology), the Environment means the specially working conditions under which Man and Machine occupy together(e.g. temperature, noise, vibration, hazardous gases etc.). The three goals of the optimization of the system are safety, efficiency and economy.In 1981 with direct support from one of the greatest modern Chinese scientists, Qian Xuesen, Man-Machine-Environment System Engineering (MMESE), the integrated and advanced science research topic was established in China by Professor Shengzhao Long. In the letter to Shengzhao Long, in October 22nd, 1993, Qian Xuesen wrote: "You have created a very important modern science subject and technology in China!".
Vehicle Dynamics and Control: Advanced Methodologies features the latest information on advanced dynamics and vehicle motion control, including a comprehensive overview of passenger cars and articulated vehicles, fundamentals, and emerging developments. This book provides a unified, balanced treatment of advanced approaches to vehicle dynamics and control. It proceeds to cover advanced vehicle control strategies, such as identification and estimation, adaptive nonlinear control, new robust control techniques, and soft computing. Other topics, such as the integrated control of passenger cars and articulated heavy vehicles, are also discussed with a significant amount of material on engineering methodology, simulation, modeling, and mathematical verification of the systems. This book discusses and solves new challenges in vehicle dynamics and control problems and helps graduate students in the field of automotive engineering as well as researchers and engineers seeking theoretical/practical design procedures in automotive control systems.
Introduced by Annie Proulx, lose yourself in an epic naval journey in this Booker Prize-winning historical novel: the first in the acclaimed Sea Trilogy by the author of Lord of the Flies. I grow a little crazy, I think, like all men at sea who live too close to each other and too close thereby to all that is monstrous under the sun and moon . . . Edmund Talbot is sailing to Australia in the early nineteenth century. In his journal, he records mounting tensions aboard the ancient, stinking warship, as officers, sailors, soldiers and emigrants jostle in the cramped darkness below decks. But when something happens to Reverend Colley that brings him into a 'hell of self-degradation', it seems that shame is a force deadlier than the sea itself . . . 'It is the emotional veracity of life at sea that powers Golding's exceptional writing ... The fury, mystery and challenge.' Kate Mosse 'Golding writes the past as present [with] uncanny skill and tremendous intuition.' Ben Okri 'A master at the full stretch of his age and wisdom - necessary, provoking, urgent, rich, complex and rare.' The Times 'Golding's best and most accessible story since Lord of the Flies.' Melvyn Bragg 'An extraordinary novel.' Observer 'A truly noble achievement'. Patrick O'Brien To The Ends of the Earth: A Sea Trilogy - Book One |
![]() ![]() You may like...
Orbital Mechanics and Formation Flying…
Pedro A. Capo-Lugo, P.M. Bainum
Hardcover
R4,503
Discovery Miles 45 030
Commercial Ship Surveying - On/Off Hire…
Harry Karanassos
Paperback
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
Michigan's C. Harold Wills - The Genius…
Alan Naldrett, Lynn Lyon Naldrett
Paperback
Nonlinear Kalman Filter for Multi-Sensor…
Jean-Philippe Condomines
Hardcover
R2,664
Discovery Miles 26 640
Air Law - A Comprehensive Sourcebook for…
Philippe-Joseph Salazar
Paperback
Flight Dynamics and System…
Jared A. Grauer, James E. Hubbard Jr.
Hardcover
R3,168
Discovery Miles 31 680
|