Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 35 matches in All Departments
This holistic book is an invaluable reference for addressing various practical challenges in architecting and engineering Intelligent IoT and eHealth solutions for industry practitioners, academic and researchers, as well as for engineers involved in product development. The first part provides a comprehensive guide to fundamentals, applications, challenges, technical and economic benefits, and promises of the Internet of Things using examples of real-world applications. It also addresses all important aspects of designing and engineering cutting-edge IoT solutions using a cross-layer approach from device to fog, and cloud covering standards, protocols, design principles, reference architectures, as well as all the underlying technologies, pillars, and components such as embedded systems, network, cloud computing, data storage, data processing, big data analytics, machine learning, distributed ledger technologies, and security. In addition, it discusses the effects of Intelligent IoT, which are reflected in new business models and digital transformation. The second part provides an insightful guide to the design and deployment of IoT solutions for smart healthcare as one of the most important applications of IoT. Therefore, the second part targets smart healthcare-wearable sensors, body area sensors, advanced pervasive healthcare systems, and big data analytics that are aimed at providing connected health interventions to individuals for healthier lifestyles.
This book tackles important problems of anomaly detection and health status analysis in complex core router systems, integral to today's Internet Protocol (IP) networks. The techniques described provide the first comprehensive set of data-driven resiliency solutions for core router systems. The authors present an anomaly detector for core router systems using correlation-based time series analysis, which monitors a set of features of a complex core router system. They also describe the design of a changepoint-based anomaly detector such that anomaly detection can be adaptive to changes in the statistical features of data streams. The presentation also includes a symbol-based health status analyzer that first encodes, as a symbol sequence, the long-term complex time series collected from a number of core routers, and then utilizes the symbol sequence for health analysis. Finally, the authors describe an iterative, self-learning procedure for assessing the health status. Enables Accurate Anomaly Detection Using Correlation-Based Time-Series Analysis; Presents the design of a changepoint-based anomaly detector; Includes Hierarchical Symbol-based Health-Status Analysis; Describes an iterative, self-learning procedure for assessing the health status.
This book describes novel hardware security and microfluidic biochip design methodologies to protect against tampering attacks in cyberphysical microfluidic biochips (CPMBs). It also provides a general overview of this nascent area of research, which will prove to be a vital resource for practitioners in the field.This book shows how hardware-based countermeasures and design innovations can be a simple and effective last line of defense, demonstrating that it is no longer justifiable to ignore security and trust in the design phase of biochips.
This book will introduce new techniques for detecting and diagnosing small-delay defects in integrated circuits. Although this sort of timing defect is commonly found in integrated circuits manufactured with nanometer technology, this will be the first book to introduce effective and scalable methodologies for screening and diagnosing small-delay defects, including important parameters such as process variations, crosstalk, and power supply noise.
This book describes innovative techniques to address the testing
needs of 3D stacked integrated circuits (ICs) that utilize
through-silicon-vias (TSVs) as vertical interconnects. The authors
identify the key challenges facing 3D IC testing and present
results that have emerged from cutting-edge research in this
domain. Coverage includes topics ranging from die-level wrappers,
self-test circuits, and TSV probing to test-architecture design,
test scheduling, and optimization. Readers will benefit from an
in-depth look at test-technology solutions that are needed to make
3D ICs a reality and commercially viable.
This book provides a comprehensive overview of flow-based, microfluidic VLSI. The authors describe and solve in a comprehensive and holistic manner practical challenges such as control synthesis, wash optimization, design for testability, and diagnosis of modern flow-based microfluidic biochips. They introduce practical solutions, based on rigorous optimization and formal models. The technical contributions presented in this book will not only shorten the product development cycle, but also accelerate the adoption and further development of modern flow-based microfluidic biochips, by facilitating the full exploitation of design complexities that are possible with current fabrication techniques.
This book provides a comprehensive guide to the design of sustainable and green computing systems (GSC). Coverage includes important breakthroughs in various aspects of GSC, including multi-core architectures, interconnection technology, data centers, high performance computing (HPC), and sensor networks. The authors address the challenges of power efficiency and sustainability in various contexts, including system design, computer architecture, programming languages, compilers and networking.
This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point.
This book provides a comprehensive set of optimization and prediction techniques for an enterprise information system. Readers with a background in operations research, system engineering, statistics, or data analytics can use this book as a reference to derive insight from data and use this knowledge as guidance for production management. The authors identify the key challenges in enterprise information management and present results that have emerged from leading-edge research in this domain. Coverage includes topics ranging from task scheduling and resource allocation, to workflow optimization, process time and status prediction, order admission policies optimization, and enterprise service-level performance analysis and prediction. With its emphasis on the above topics, this book provides an in-depth look at enterprise information management solutions that are needed for greater automation and reconfigurability-based fault tolerance, as well as to obtain data-driven recommendations for effective decision-making.
This book provides readers with an insightful guide to the design, testing and optimization of 2.5D integrated circuits. The authors describe a set of design-for-test methods to address various challenges posed by the new generation of 2.5D ICs, including pre-bond testing of the silicon interposer, at-speed interconnect testing, built-in self-test architecture, extest scheduling, and a programmable method for low-power scan shift in SoC dies. This book covers many testing techniques that have already been used in mainstream semiconductor companies. Readers will benefit from an in-depth look at test-technology solutions that are needed to make 2.5D ICs a reality and commercially viable.
This book provides a comprehensive set of characterization, prediction, optimization, evaluation, and evolution techniques for a diagnosis system for fault isolation in large electronic systems. Readers with a background in electronics design or system engineering can use this book as a reference to derive insightful knowledge from data analysis and use this knowledge as guidance for designing reasoning-based diagnosis systems. Moreover, readers with a background in statistics or data analytics can use this book as a practical case study for adapting data mining and machine learning techniques to electronic system design and diagnosis. This book identifies the key challenges in reasoning-based, board-level diagnosis system design and presents the solutions and corresponding results that have emerged from leading-edge research in this domain. It covers topics ranging from highly accurate fault isolation, adaptive fault isolation, diagnosis-system robustness assessment, to system performance analysis and evaluation, knowledge discovery and knowledge transfer. With its emphasis on the above topics, the book provides an in-depth and broad view of reasoning-based fault diagnosis system design. * Explains and applies optimized techniques from the machine-learning domain to solve the fault diagnosis problem in the realm of electronic system design and manufacturing;* Demonstrates techniques based on industrial data and feedback from an actual manufacturing line;* Discusses practical problems, including diagnosis accuracy, diagnosis time cost, evaluation of diagnosis system, handling of missing syndromes in diagnosis, and need for fast diagnosis-system development.
This book describes a comprehensive framework for hardware/software co-design, optimization, and use of robust, low-cost, and cyberphysical digital microfluidic systems. Readers with a background in electronic design automation will find this book to be a valuable reference for leveraging conventional VLSI CAD techniques for emerging technologies, e.g., biochips or bioMEMS. Readers from the circuit/system design community will benefit from methods presented to extend design and testing techniques from microelectronics to mixed-technology microsystems. For readers from the microfluidics domain, this book presents a new design and development strategy for cyberphysical microfluidics-based biochips suitable for large-scale bioassay applications. * Takes a transformative, "cyberphysical" approach towards achieving closed-loop and sensor feedback-driven biochip operation under program control; * Presents a "physically-aware" system reconfiguration technique that uses sensor data at intermediate checkpoints to dynamically reconfigure biochips; * Enables readers to simplify the structure of biochips, while facilitating the "general-purpose" use of digital microfluidic biochips for a wider range of applications.
This book provides an insightful guide to the design, testing and optimization of micro-electrode-dot-array (MEDA) digital microfluidic biochips. The authors focus on the characteristics specific for MEDA biochips, e.g., real-time sensing and advanced microfluidic operations like lamination mixing and droplet shape morphing. Readers will be enabled to enhance the automated design and use of MEDA and to develop a set of solutions to facilitate the full exploitation of design complexities that are possible with standard CMOS fabrication techniques. The book provides the first set of design automation and test techniques for MEDA biochips. The methods described in this book have been validated using fabricated MEDA biochips in the laboratory. Readers will benefit from an in-depth look at the MEDA platform and how to combine microfluidics with software, e.g., applying biomolecular protocols to software-controlled and cyberphysical microfluidic biochips.
System-on-a-Chip (SOC) integrated circuits composed of embedded cores are now commonplace. Nevertheless, there remain several roadblocks to rapid and efficient system integration. Test development is seen as a major bottleneck in SOC design and manufacturing capabilities. Testing SOCs is especially challenging in the absence of standardized test structures, test automation tools, and test protocols. In addition, long interconnects, high density, and high-speed designs lead to new types of faults involving crosstalk and signal integrity. SOC (System-on-a-Chip) Testing for Plug and Play Test Automation is an edited work containing thirteen contributions that address various aspects of SOC testing. SOC (System-on-a-Chip) Testing for Plug and Play Test Automation is a valuable reference for researchers and students interested in various aspects of SOC testing.
A microfluidic biochip is an engineered fluidic device that controls the flow of analytes, thereby enabling a variety of useful applications. According to recent studies, the fields that are best set to benefit from the microfluidics technology, also known as lab-on-chip technology, include forensic identification, clinical chemistry, point-of-care (PoC) diagnostics, and drug discovery. The growth in such fields has significantly amplified the impact of microfluidics technology, whose market value is forecast to grow from $4 billion in 2017 to $13.2 billion by 2023. The rapid evolution of lab-on-chip technologies opens up opportunities for new biological or chemical science areas that can be directly facilitated by sensor-based microfluidics control. For example, the digital microfluidics-based ePlex system from GenMarkDx enables automated disease diagnosis and can bring syndromic testing near patients everywhere. However, as the applications of molecular biology grow, the adoption of microfluidics in many applications has not grown at the same pace, despite the concerted effort of microfluidic systems engineers. Recent studies suggest that state-of-the-art design techniques for microfluidics have two major drawbacks that need to be addressed appropriately: (1) current lab-on-chip systems were only optimized as auxiliary components and are only suitable for sample-limited analyses; therefore, their capabilities may not cope with the requirements of contemporary molecular biology applications; (2) the integrity of these automated lab-on-chip systems and their biochemical operations are still an open question since no protection schemes were developed against adversarial contamination or result-manipulation attacks. Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms provides solutions to these challenges by introducing a new design flow based on the realistic modeling of contemporary molecular biology protocols. It also presents a microfluidic security flow that provides a high-level of confidence in the integrity of such protocols. In summary, this book creates a new research field as it bridges the technical skills gap between microfluidic systems and molecular biology protocols but it is viewed from the perspective of an electronic/systems engineer.
Recent microfluidic technologies have brought a complete paradigm shift in automating biochemical processing on a tiny lab-on-chip (a.k.a. biochip) that replaces expensive and bulky instruments traditionally used in implementing bench-top laboratory protocols. Biochips have already made a profound impact on various application domains such as clinical diagnostics, DNA analysis, genetic engineering, and drug discovery, among others. They are capable of precisely manipulating micro-/pico-liter quantities of fluids, and provide integrated support for mixing, storage, transportation, and sensing, on-chip. In almost all bioprotocols, sample preparation plays an important role, which includes dilution and mixing of several fluids satisfying certain volumetric ratios. However, designing algorithms that minimize reactant-cost and sample-preparation time suited for microfluidic chips poses a great challenge from the perspective of protocol mapping, scheduling, and physical design. Algorithms for Sample Preparation with Microfluidic Lab-on-Chip attempts to bridge the widening gap between biologists and engineers by introducing, from the fundamentals, several state-of-the-art computer-aided-design (CAD) algorithms for sample preparation with digital and flow-based microfluidic biochips. Technical topics discussed in the book include: - Basics of digital and flow-based microfluidic lab-on-chip - Comprehensive review of state-of-the-art sample preparation algorithms - Sample-preparation algorithms for digital microfluidic lab-on-chip - Sample-preparation algorithms for flow-based microfluidic lab-on-chip
Microfluidics-based biochips combine electronics with biochemistry, providing access to new application areas in a wide variety of fields. Continued technological innovations are essential to assuring the future role of these chips in functional diversification in biotech, pharmaceuticals, and other industries. Revolutionary guidance on design, optimization, and testing of low-cost, disposable biochips Microfluidic Biochips: Design Automation and Optimization comprehensively covers the appropriate design tools and in-system automation methods that will help users adapt to new technology and progress in chip design and manufacturing. Based on results from several Duke University research projects on design automation for biochips, this book uses real-life bioassays as examples to lay out an automated design flow for creating microfluidic biochips. It also develops solutions to the unique problems associated with that process. Highlights the design of the protein crystallization chip to illustrate the benefits of automated design flowIn addition to covering automated design, the authors provide a detailed methodology for the testing, use, and optimization of robust, cost-efficient, manufacturable digital microfluidic systems used in protein crystallization and other areas. The invaluable tools and practices presented here will help readers to: Address optimization problems related to layout, synthesis, droplet routing, and testing for digital microfluidic biochips Make routing-aware, architectural-level design choices and defect-tolerant physical design decisions simultaneously Achieve the optimization goal, which includes minimizing time-to-response, chip area, and test complexity Effectively deal with practical issues such as defects, fabrication cost, physical constraints, and application-driven design The authors present specialized pin-constrained design techniques for making biochips with a focus on cost and disposability. They also discuss chip testing to ensure dependability, which is key to optimizing safety-critical applications such as point-of-care medical diagnostics, on-chip DNA analysis, automated drug discovery, air-quality monitoring, and food-safety testing. This book is an optimal reference for academic and industrial researchers in the areas of digital microfluidic biochips and electronic design automation.
This book provides a comprehensive set of characterization, prediction, optimization, evaluation, and evolution techniques for a diagnosis system for fault isolation in large electronic systems. Readers with a background in electronics design or system engineering can use this book as a reference to derive insightful knowledge from data analysis and use this knowledge as guidance for designing reasoning-based diagnosis systems. Moreover, readers with a background in statistics or data analytics can use this book as a practical case study for adapting data mining and machine learning techniques to electronic system design and diagnosis. This book identifies the key challenges in reasoning-based, board-level diagnosis system design and presents the solutions and corresponding results that have emerged from leading-edge research in this domain. It covers topics ranging from highly accurate fault isolation, adaptive fault isolation, diagnosis-system robustness assessment, to system performance analysis and evaluation, knowledge discovery and knowledge transfer. With its emphasis on the above topics, the book provides an in-depth and broad view of reasoning-based fault diagnosis system design. * Explains and applies optimized techniques from the machine-learning domain to solve the fault diagnosis problem in the realm of electronic system design and manufacturing;* Demonstrates techniques based on industrial data and feedback from an actual manufacturing line;* Discusses practical problems, including diagnosis accuracy, diagnosis time cost, evaluation of diagnosis system, handling of missing syndromes in diagnosis, and need for fast diagnosis-system development.
This book provides readers with an insightful guide to the design, testing and optimization of 2.5D integrated circuits. The authors describe a set of design-for-test methods to address various challenges posed by the new generation of 2.5D ICs, including pre-bond testing of the silicon interposer, at-speed interconnect testing, built-in self-test architecture, extest scheduling, and a programmable method for low-power scan shift in SoC dies. This book covers many testing techniques that have already been used in mainstream semiconductor companies. Readers will benefit from an in-depth look at test-technology solutions that are needed to make 2.5D ICs a reality and commercially viable.
This book provides a comprehensive overview of flow-based, microfluidic VLSI. The authors describe and solve in a comprehensive and holistic manner practical challenges such as control synthesis, wash optimization, design for testability, and diagnosis of modern flow-based microfluidic biochips. They introduce practical solutions, based on rigorous optimization and formal models. The technical contributions presented in this book will not only shorten the product development cycle, but also accelerate the adoption and further development of modern flow-based microfluidic biochips, by facilitating the full exploitation of design complexities that are possible with current fabrication techniques.
This book provides readers with a valuable guide to understanding security and the interplay of computer science, microfluidics, and biochemistry in a biochip cyberphysical system (CPS). The authors uncover new, potential threat and trust-issues to address, as this emerging technology is poised to be adapted at a large scale. Readers will learn how to secure biochip CPS by leveraging the available resources in different application contexts, as well as how to ensure intellectual property (IP) is protected against theft and counterfeits. This book enables secure biochip CPS design by helping bridge the knowledge gap at the intersection of the multi-disciplinary technology that drives biochip CPS.
This book provides a comprehensive guide to the design of sustainable and green computing systems (GSC). Coverage includes important breakthroughs in various aspects of GSC, including multi-core architectures, interconnection technology, data centers, high performance computing (HPC), and sensor networks. The authors address the challenges of power efficiency and sustainability in various contexts, including system design, computer architecture, programming languages, compilers and networking.
This book will introduce new techniques for detecting and diagnosing small-delay defects in integrated circuits. Although this sort of timing defect is commonly found in integrated circuits manufactured with nanometer technology, this will be the first book to introduce effective and scalable methodologies for screening and diagnosing small-delay defects, including important parameters such as process variations, crosstalk, and power supply noise.
This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point.
System-on-a-Chip (SOC) integrated circuits composed of embedded cores are now commonplace. Nevertheless, there remain several roadblocks to rapid and efficient system integration. Test development is seen as a major bottleneck in SOC design and manufacturing capabilities. Testing SOCs is especially challenging in the absence of standardized test structures, test automation tools, and test protocols. In addition, long interconnects, high density, and high-speed designs lead to new types of faults involving crosstalk and signal integrity. SOC (System-on-a-Chip) Testing for Plug and Play Test Automation is an edited work containing thirteen contributions that address various aspects of SOC testing. SOC (System-on-a-Chip) Testing for Plug and Play Test Automation is a valuable reference for researchers and students interested in various aspects of SOC testing. |
You may like...
|