![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics
In keeping with goal and style of the Handbook in Modern Biophysics series, the proposed book will maintain a chapter structure that contains two parts: concepts and biological application. The book also integrates all the chapters into a smooth, continuous discourse. The first and second chapters establish the mathematical methods and theoretical framework underpinning the different topics in the rest if the book. Other chapters will use the theoretical framework as a basis to discuss optical and NMR approaches. Each chapter will contain innovative didactic elements that facilitate teaching, self-study, and research preparation (key points, summary, exercise, references).
In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include: quantum structures of semiconductors, spintronics, photonic crystals, surface plasmons in metallic nanostructures, photonic metamaterials, liquid crystal materials, organic LED materials and magnet-optics.
The study of surfaces has experienced dramatic growth over the past decade. Now, the editors of the internationally celebrated series Advances in Chemical Physics have brought together in this self-contained, special topic volume contributions from leading researchers in the field treating some of the most crucial aspects of the experimental and theoretical study of surfaces. This work delves into such core issues as:
This valuable resource provides important insights into the current state of knowledge about surface properties. Prigogine and Rice's latest work will stimulate the imagination and motivate the exploration of other aspects of this fascinating subject.
Stellar astrophysics still provides the basic framework for deciphering the imprints left over by the evolving universe on all scales. Advances or shortcomings in the former field have direct consequences in our ability to understand the global properties of the latter. This volume contains the most recent updates on a variety of topics that, though independent by themselves, are inevitably connected on a cosmological scale. These include comprehensive articles by leaders in fields extending from stellar atmospheres through properties of the stellar component in the Milky Way up to the stellar environment in high redshift galaxies. The wide coverage of astrophysical themes makes this volume very valuable for researchers and Ph.D. students in astrophysics.
The SOLAR-A spacecraft was launched by the Institute of Space and Astronautical Science, Japan (ISS) in August 1991, and, following and ISAS tradition, was renamed YOHKOH. This mission is dedicated principally to the study of solar flares, especially of high-energy phenomena observed in the X-ray and gamma-ray ranges. With a co-ordinated set of instruments including hard X-ray and soft X-ray imaging telescopes as well as spectrometers with advanced capabilities, it is expected to reveal new aspects of flares and help better understand their physics, supporting international collaborations with ground-based observatories as well as theoretical investigations. An overview of this mission, including the stallite, its scientific instruments, and its operation is given in this book.
Seismic waves - generated both by natural earthquakes and by man-made sources - have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or spherical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed. The second edition especially includes new observational facts such as the spatial variation of medium inhomogeneities and the temporal change in scattering characteristics and recent theoretical developments in the envelope synthesis in random media for the last ten years. Mathematics is thoroughly rewritten for improving the readability. Written for advanced undergraduates or beginning graduate students of geophysics or planetary sciences, this book should also be of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.
The millimetre and submillimetre spectral region (300 to 3000 Ilm or 1000 to 100 GHz) was until recently one of the few spectral regimes not fully opened up for astronomical studies. Thanks both to improvements in detectors and receivers and to the construction of large telescopes at high altitude sites this situation is improving very rapidly. Three major telescopes have been built recently and are coming into operation during 1987 and 1988, namely the 15m James Clerk Maxwell Telescope (JCMT) and the lOAm Caltech Submillimetre Observatory (CSO) telescope, both located on Mauna Kea, Hawaii, and the 15 m Swedish -ESO telescope (SEST) in Chile. Because a very wide range of astronomical problems can be tackled with these major new facilities there is a great deal of interest from the many potential new users anxious to become familiar with this rapidly developing field. During 1986 it became clear to British and Dutch astronomers involved in planning the commissioning and operation of the JCMT, that a summer school in this field would greatly benefit the potential and actual JCMT user community. With financial support from the SERC and supplemented by a grant from the ZWO, the Summer School on 'Millimetre and Submillimetre Astronomy' was held at Stirling University from June 21 to 27, 1987.
Written by leading exponents in the field, this collection of timely reviews presents observational methods and the latest results of astronomical research as well as their theoretical foundations and interrelations, providing information and scientifically rigorous coverage.
Replacement of a failing hip joint or other defective organs in the human body by artificial 'spare parts' has significantly improved our quality of life. These spare parts have to meet a wide spectrum of mechanical, chemical and design requirements. In this book, the properties and selection of materials for such `spare parts' are deduced from case studies at the start of each chapter. Hard tissue replacements (joints, long bones, dental), soft tissue (heart valves) and tissue engineering are included. The chapters also detail the three generic classes of materials: alloys (including shape memory alloys), ceramics & glasses and polymers. Separate chapters are devoted to the toxicity of implants, the metals zirconium(-zirconium oxide), tantalum, niobium and metallic glasses, soluble metals and Rapid Prototyping techniques for the fabrication of custom made prostheses. The book concludes by a chapter on water as water is always 'there' and conditions the interaction between body and implant. Water is the very matrix of life on earth. A peculiarity of the book is its 'perspective view', meaning that the authors looked behind the present biomaterials' decor and included historical backgrounds (real and mythological), future developments, and the relation to nature (plants and geology).
This thesis addresses two of the central processes which underpin the formation of galaxies: the formation of stars and the injection of energy into the interstellar medium from supernovae, called feedback. In her work Claudia Lagos has completely overhauled the treatment of these processes in simulations of galaxy formation. Her thesis makes two major breakthroughs, and represents the first major steps forward in these areas in more than a decade. Her work has enabled, for the first time, predictions to be made which can be compared against new observations which probe the neutral gas content of galaxies, opening up a completely novel way to constrain the models. The treatment of feedback from supernovae, and how this removes material from the interstellar medium, is also likely to have a lasting impact on the field. Claudia Lagos Ph.D. thesis was nominated by the Institute for Computational Cosmology at Durham University as an outstanding Ph.D. thesis 2012.
oltage-gated calcium channels are essential mediators of a range of physiological functions, including the communication between nerve Vcells, the regulation of heart beat, muscle contraction, and secretion of hormones such as insulin. Consequently, these channels are critical phar macological targets in the treatment of a variety of disorders, such as epi lepsy, hypertension, and pain. Voltage-gated calcium channels have there fore been subject to intense study by numerous investigators over the past few decades, and an immense body of work has accumulated. In this book, we provide the first comprehensive overview of our current state of knowl edge concerning this exciting field of research. Leading off with a general review of calcium signaling and techniques to measure calcium channel ac tivity, the book delves into a provocative overview of the history of the cal cium channel field, contributed by one of the key pioneers in the field. Dr. Richard Tsien. This is followed by an in depth review of the biochemical and molecular biological characterization of calcium channel genes by Drs. Catterall and Snutch whose research has resulted in major advances in the calcium channel field. A number of chapters are dedicated towards various aspects of calcium channel structure and function, including channel gat ing, permeation, modulation and interactions with members of the exo- totic machinery-contributed by both established leaders and rising stars in the field."
Cold atmospheric plasma is an auspicious new candidate in cancer treatment. Cold atmospheric plasma (CAP) is a partially ionized gas in which the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules and UV photons. These various compositional elements have the potential to inhibit cancer cell activity whilst doing no harm to healthy cells. Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults; treatment including surgery, radio- and chemotherapy remains palliative for most patients as a cure remains elusive. The successful combination of the standard chemotherapeutic temozolomide (TMZ) and CAP treatment features synergistic effects even in resistant glioma cells. In particular in glioma therapy, CAP could offer an innovative approach allowing specific cancer cell / tumor tissue inhibition without damaging healthy cells. Thus CAP is a promising candidate for combination therapy especially for patients suffering from GBMs showing TMZ resistance.
Infrared spectroscopy is a new and innovative technology to study protein folding/misfolding events in the broad arsenal of techniques conventionally used in this field. The progress in understanding protein folding and misfolding is primarily due to the development of biophysical methods which permit to probe conformational changes with high kinetic and structural resolution. The most commonly used approaches rely on rapid mixing methods to initiate the folding event via a sudden change in solvent conditions. Traditionally, techniques such as fluorescence, circular dichroism or visible absorption are applied to probe the process. In contrast to these techniques, infrared spectroscopy came into play only very recently, and the progress made in this field up to date which now permits to probe folding events over the time scale from picoseconds to minutes has not yet been discussed in a book. The aim of this book is to provide an overview of the developments as seen by some of the main contributors to the field. The chapters are not intended to give exhaustive reviews of the literature but, instead to illustrate examples demonstrating the sort of information, which infrared techniques can provide and how this information can be extracted from the experimental data. By discussing the strengths and limitations of the infrared approaches for the investigation of folding and misfolding mechanisms this book helps the reader to evaluate whether a particular system is appropriate for studies by infrared spectroscopy and which specific advantages the techniques offer to solve specific problems.
Star clusters are at the heart of astronomy, being key objects for our understanding of stellar evolution and galactic structure. Observations with the Hubble Space Telescope and other modern equipment have revealed fascinating new facts about these galactic building blocks. This book provides two comprehensive and up-to-date, pedagogically designed reviews on star clusters by two well-known experts in the field. Bruce Carney presents our current knowledge of the relative and absolute ages of globular clusters and the chemical history of our Galaxy. Bill Harris addresses globular clusters in external galaxies and their use as tracers of galaxy formation and cosmic distance indicators. The book is written for graduate students as well as professionals in astronomy and astrophysics.
This book highlights the overview of the COVID-19 pandemic from both the scientific and the social perspectives. The scientific part presents key facts of COVID-19, including the structure of the virus and the techniques for the diagnosis, treatment, and vaccine development against the disease, covering state-of-the-art findings and achievements worldwide. The social part is written by WHO professionals who worked on the frontier of the fight against the disease. It covers the global security situation during the pandemic, the WHO and governmental-level risk management measures, and the estimated impact that COVID-19 will eventually create on social life after it is globally controlled.
This book introduces the use of industrial CMOS processes to produce arrays of nanomechanical cantilever transducers with on-chip driving and signal conditioning circuitry. These cantilevers are familiar from Scanning Probe Microscopy (SPM) and allow the sensitive detection of physical quantities such as forces and mass changes. The book is divided into three parts. First fabrication aspects and the mechanisms of cantilever resonators are introduced. Of the possible driving and sensing mechanisms, electrothermal and magnetic excitation, as well as piezoresistive detection and the use of MOS transistors for the deflection detection are introduced. This is followed by two application examples: The use of resonant cantilevers for the mass-sensitive detection of volatile organic compounds, and force sensor arrays for parallel Scanning Atomic Force Microscopy (AFM) of large areas.
The Earth's atmosphere is often portrayed as a thin and finite blanket covering our planet, separate from the emptiness of outer space. In reality, the transition is gradual and a tiny fraction of the atmophere gases is still present at the altitude of low orbiting satellites. The very high velocities of these satellites ensure that their orbital motion can still be considerably affected by air density and wind. This influence can be measured using accelerometers and satellite tracking techniques. The opening chapters of this thesis provide an excellent introduction to the various disciplines that are involved in the interpretation of these observations: orbital mechanics, satellite aerodynamics and upper atmospheric physics. A subsequent chapter, at the heart of this work, covers advances in the algorithms used for processing satellite accelerometry and Two-Line Element (TLE) orbit data. The closing chapters provide an elaborate analysis of the resulting density and wind products, which are generating many opportunities for further research, to improve the modelling and understanding of the thermosphere system and its interactions with the lower atmosphere, the ionosphere-magnetosphere system and the Sun.
The transduction of signals from the extracellular space across the plasma membrane into the interior of cells and ultimately to the nucleus, where in - sponse to such external signals the transcription of the genetic code is inf- enced,belongs to the most fundamental and important events in the regulation of the life cycle of cells. During recent years several signal transduction cascades have been elucidated which regulate,for instance,the growth and the prolife- tion of organisms as diverse as mammals, flies, worms and yeast. The general picture which emerged from these investigations is that nature employs a c- bination of non-covalent ligand/protein and protein/protein interactions together with a set of covalent protein modifications to generate the signals and transduce them to their destinations. The ligands which are recognized may be low molecular weight compounds like lipids, inositol derivatives, steroids or microbial products like cyclosporin. They may be proteins like, for instance, growth factors or intracellular adaptor proteins which carry SH2 or SH3 domains, and they may be specific DNA stretches which are selectively rec- nized by transcription factors. These and other aspects of biological signal transduction provide an open and rewarding field for investigations by scientists from various different dis- plines of biology,medical research and chemistry working in academic research institutions or in industry.
This volume contains a comprehensive treatment of X-ray spectroscopy, as applied in astrophysics. It is presented in the form of extensive notes of lectures given by seven distinguished scientists at the Tenth Summer School of the European Astrophysics Doctoral Network. The subjects covered are: basic line and continuum radiation processes in X-ray and gamma-ray astronomy; atomic physics of collision- and radiation-dominated plasmas; X-ray spectroscopic observations with ASCA and BeppoSAX; future X-ray spectroscopy missions; X-ray optics, and X-ray spectroscopy instrumentation. The book, which will appeal to both researchers and graduate students, is timely in view of the scheduled launches of the big X-ray observatories AXAF and XMM in 1999.
A collection of sixteen coordinated reviews on the origins of large-scale magnetic fields in the Universe, this book discusses magnetic fields in all relevant astrophysical contexts, from the interstellar medium to the scales of galaxies and clusters of galaxies. Magnetic fields are described in their very diverse environments, from stellar winds to galactic haloes and astrophysical jets; together with the roles they play in forming the structures and shaping the dynamics of these objects. Both observational evidence and its theoretical interpretations are covered up to the largest scales in the Universe. The authors are all leading scientists in their fields, making this book an authoritative, up-to-date and enduring contribution to astrophysics. This volume is aimed at graduate students and researchers in astrophysics. Previously published in Space Science Reviews journal, Vol. 166/1-4 and Vol. 169/1-4, 2012.
This book offers an in-depth study of two well-known models of "avalanche" dynamics, modified minimally by the inclusion of relaxation. Many complex systems respond to continuous inputs of energy by accumulation of stress over time, interrupted by sudden energy releases called avalanches. The first model studied is the viscoelastic interface driven over disorder, which is shown to display the fundamental features of friction. In the mean-field limit, the friction force derived semi-analytically is compatible with laboratory experiments (displaying both velocity weakening and contact aging). In two dimensions, large-scale numerical simulations are in good agreement with the basic features of real earthquakes (Gutenberg-Richter Law, aftershock migration). The second model is a non-Markovian variant of Directed Percolation, in which we observe that the universality class is only partly modified by relaxation, a promising finding with respect to our first model.
Expanding on the concept of the authors' previous book "Electroweak Processes in External Electromagnetic Fields," this new book systematically describes the investigation methods for the effects of external active media, both strong electromagnetic fields and hot dense plasma, in quantum processes. Solving the solar neutrino puzzle in a unique experiment conducted with the help of the heavy-water detector at the Sudbery Neutrino Observatory, along with another neutrino experiments, brings to the fore electroweak physics in an active external medium. It is effectively demonstrated that processes of neutrino interactions with active media of astrophysical objects may lead, under some physical conditions, to such interesting effects as neutrino-driven shockwave revival in a supernova explosion, a "cherry stone shooting" mechanism for pulsar natal kick, and a neutrino pulsar. It is also shown how poor estimates of particle dispersion in external active media sometimes lead to confusion. The book will appeal to graduate and post-graduate students of theoretical physics with a prior understanding of Quantum Field Theory (QFT) and the Standard Model of Electroweak Interactions, as well as to specialists in QFT who want to know more about the problems of quantum phenomena in hot dense plasma and external electromagnetic fields.
Der bekannte Astronom Karl Schwarzschild (1873-1916) gilt als der Begr}nder der Astrophysik und als hervorragender Forscher mit einer erstaunlichen Bandbreite seiner Interessen. Arbeiten zur Himmelsmechanik, Elektrodynamik und Relativit{tstheorie weisen ihn als vorz}glichen Mathematiker und Physiker seiner Zeit aus. Untersuchungen zur Photographischen Photometrie, Optik und Spektroskopie zeigen den versierten Beobachter, der sein Me instrument beherrscht. Schlie lich arbeitete Schwarzschild als Astrophysiker und an Sternatmosph{ren, Kometen, Struktur und Dynamikvon Sternsystemen. Die in seinem kurzen Leben entstandene F}lle von wissenschafltichen Arbeiten ist in drei B{nden der Gesamtausgabe gesammelt, erg{nzt durch biographisches Material und ein Essay des Nobelpreistr{gers S. Chandrasekhar und Annotationen von Fachleuten in jedem der drei B{nde.
This collection of papers will address the question "What is the Magnetospheric Cusp?" and what is its role in the coupling of the solar wind to the magnetosphere as well as its role in the processes of particle transport and energization within the magnetosphere. The cusps have traditionally been described as narrow funnel-shaped regions that provide a focus of the Chapman-Ferraro currents that flow on the magnetopause, a boundary between the cavity dominated by the geomagnetic field (i.e., the magnetosphere) and the external region of the interplanetary medium. Measurements from a number of recent satellite programs have shown that the cusp is not confined to a narrow region near local noon but appears to encompass a large portion of the dayside high-latitude magnetosphere. It appears that the cusp is a major source region for the production of energetic charged particles for the magnetosphere. This book will be of great interest to scientists in Space Physics as well as to those working in research organizations in governments and industries, university departments of physics, astronomy, space physics, and geophysics. Part of this book has already been published in a journal. |
![]() ![]() You may like...
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,857
Discovery Miles 28 570
Biological Experiments in Space - 30…
Galina Nechitailo, Alexey Kondyurin
Paperback
R3,804
Discovery Miles 38 040
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,821
Discovery Miles 58 210
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,451
Discovery Miles 54 510
Everyday Applied Geophysics 2…
Nicolas Florsch, Frederic Muhlach, …
Hardcover
High-Density Sequencing Applications in…
Agamemnon J. Carpousis
Hardcover
R4,600
Discovery Miles 46 000
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R3,164
Discovery Miles 31 640
The Geological Interpretation of Well…
M.H. Rider, Martin Kennedy
Paperback
R1,669
Discovery Miles 16 690
|