![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
The Study of Travelling Interplanetary Phenomena (STIP) was formally established by the International Council of Scientific Unions' Special Committee on Solar-Terrestrial Physics (SCOSTEP) in August 1973 with M. Dryer as Convenor and M. A. Shea as Secretary. The scientific objec tives of STIP are the study and search for understanding of quiet (i.e. normal or background) and active periods in the interplanetary medium. The concepts of informal, extemporaneous interdisciplinary research is continuo sly emphasised, and these concepts have proved to be extremely successful in conducting the very productive studies undertaken by the members. About 200 scientists are actively participating in STIP, their interests ranging from solar physics (insofar as it concerns the initi ation of phenomena which move out from the Sun) to the observation and study of comets and planetary magneto spheres and ionospheres. Solar wind plasma and fields, solar and galactic cosmic rays, interstellar interactions, solar radio astronomy and interplanetary scintillations of discrete radio sources are among the topics of interest."
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.
Computer Modelling techniques have developed very rapidly during the last decade, and interact with many contemporary scientific disciplines. One of the areas of greatest activity has concerned the modelling of condensed phases, including liquids solids and amorphous systems, where simulations have been used to provide insight into basic physical processes and in more recent years to make reliable predictions of the properties of the systems simulated. Indeed the predictive role of simulations is increasingly recognised both in academic and industrial contexts. Current active areas of application include topics as diverse as the viscosity of liquids, the conformation of proteins, the behaviour of hydrogen in metals, the diffusion of molecules in porous catalysts and the properties of micelles. This book, which is based on a NATO ASI held at the University of Bath, UK, from September 5th-17th, 1988, aims to give a general survey of this field, with detailed discussions both of methodologies and of applications. The earlier chapters of the book are devoted mainly to techniques and the later ones to recent simulation studies of fluids, polymers (including biological molecules) and solids. Special attention is paid to the role of interatomic potentials which are the fundamental physical input to simulations. In addition, developments in computer hardware are considered in depth, owing to the crucial role which such developments are playing in the expansion of the horizons of computer modelling studies.
Magnetism, when extended beyond normal frameworks into cosmic space is characterized by an enormous spatial scale. Because of their large sizes the nature of magnets such as the Earth and the Sun is entirely different from the nature of a horseshoe magnet. The source of cosmic magnetism is associated with the hydrodynamic motions of a highly conductive medium. In this aspect, cosmic magnets resemble a dynamo. However, currents in the dynamo flow along properly ordered wires, while chaotic, turbulent motions are dominant inside stars and liquid planetary cores. This makes more intriguing and surprising the fact that these motions maintain a regular magnetic field. Maintenance of magnetic fields is even more impressive in huge magnets, i.e. galaxies. In fact, we are living inside a giant dynamo machine, the Milky Way galaxy. Although the idea of the global magnetic field of our Galaxy was clearly proposed almost 40 years ago, firm observational evidence and definite theoretical concepts of galactic magnetism have been developed only in the last decade. This book is the first attempt at a full and consistent presentation of this problem. We discuss both theoretical views on the origin of galactic magnetism and the methods of observational study. Previous discussions were on the level of review articles or separate chapters in monographs devoted to cosmic magnetic fields (see, e.g., H. K. Moffatt, 1978, E. N. Parker, 1979 and Zeldovich et aI., 1983).
The 2nd International Multidisciplinary Microscopy and Microanalysis Congress & Exhibition (InterM 2014) was held on 16-19 October 2014 in Oludeniz, Fethiye/ Mugla, Turkey. The aim of the congress was to gather scientists from various branches and discuss the latest improvements in the field of microscopy. The focus of the congress has been widened in an "interdisciplinary" manner, so as to allow all scientists working on several related subjects to participate and present their work. These proceedings include 33 peer-reviewed technical papers, submitted by leading academic and research institutions from over 17 countries and representing some of the most cutting-edge research available. The papers were presented at the congress in the following sessions: * Applications of Microscopy in the Physical Sciences * Applications of Microscopy in the Biological Sciences
Active Galactic Nuclei radiate over the electro-magnetic spectrum from radio waves to gamma rays. Understanding the physics of these objects therefore requires the synthesis of results from many different domains of Astronomy. It was the aim of the conference "Active Galactic Nuclei across the Electromagnetic Spectrum" to provide a forum where this exchange could take place. Some 300 astronomers participated to the conference, 250 of them presented results either as oral papers or in the form of posters. Observations in all domains of the electro magnetic spectrum in which astronomical observations can be made from the ground or from space were presented. Many theoretical contributions were also given. There has been a tremendous growth in the number and quality of Astronomical obser vations in many spectral domains over the past several years. Students of Active Galactic Nuclei have been particularly keen to make use of the available facilities (both space born and on the ground), often in a very organised way, in order to obtain repeated simultane ous data covering large bands of the spectrum. This approach has produced a qualitatively new set of data for understanding the physics of Active Galactic Nuclei. The task of the meeting was to review this data in a coherent way."
"Light is a Messenger" is the first biography of William Lawrence Bragg, who was only 25 when he won the 1915 Nobel Prize in Physics - the youngest person ever to win a Nobel Prize. It describes how Bragg discovered the use of X-rays to determine the arrangement of atoms in crystals and his pivotal role in developing this technique to the point that structures of the most complex molecules known to Man - the proteins and nucleic acids - could be solved. Although Bragg's Nobel Prize was for physics, his research profoundly affected chemistry and the new field of molecular biology, of which he became a founding figure. This book explains how these revolutionary scientific events occurred while Bragg struggled to emerge from the shadow of his father, Sir William Bragg, and amidst a career-long rivalry with the brilliant American chemist, Linus Pauling.
This volume provides an overview of the field of Astrostatistics understood as the sub-discipline dedicated to the statistical analysis of astronomical data. It presents examples of the application of the various methodologies now available to current open issues in astronomical research. The technical aspects related to the scientific analysis of the upcoming petabyte-scale databases are emphasized given the importance that scalable Knowledge Discovery techniques will have for the full exploitation of these databases. Based on the 2011 Astrostatistics and Data Mining in Large Astronomical Databases conference and school, this volume gathers examples of the work by leading authors in the areas of Astrophysics and Statistics, including a significant contribution from the various teams that prepared for the processing and analysis of the Gaia data.
"Meteoric phenomena" is the accepted term for the complex of physi cal phenomena that accompany the entry of meteoric bodies into the at mosphere of the earth (or of any planet). "Meteoric bodies" are usually defined as cosmic bodies observed by optical or radar techniques, when they enter the atmosphere. The limiting sensitivity of present-day radar equipment makes it possible to record meteors of up to stellar magnitude +14, while the most brilliant bolides may reach magnitude -19. On a mass 7 7 scale this corresponds approximately to a range of 10- to 10 g. How ever, met or astronomy is also concerned with larger objects, namely crater-forming meteorites, or objects that cause large-scale destruction when they arrive through the atmosphere (an example is the Tunguska River meteorite). Consideration of the interaction of such objects with 12 the terrestrial atmosphere extends the mass range to 10 g. On the other hand, scientists studying fragmentation processes in meteoric bod 7 ies have to consider particles with masses less than 10- g, and the use of data from meteoric-particle counters on rockets and artificial satel lites, from microcraters on the lunar surface, and from noctilucent clouds 12 lowers the minimum mass to 10- g. Therefore, the mass range of meteoric bodies, or meteoroids, encompasses 24 orders of magnitude. Although recent years have witnessed considerable development in meteor research, both in the Soviet Union and elsewhere, the main mono graphs on meteor physics were published twenty or more years ago."
This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in academia and professionals in industry working on different aspects of single-cell analysis. Dr. Fan-Gang Tseng is a Distinguished Professor of Engineering and System Science at the National Tsing Hua University, Taiwan. Dr. Tuhin Subhra Santra is a Research Associate at the California Nano Systems Institute, University of California at Los Angeles, USA.
Physics-Based Deformable Models presents a systematic physics-based framework for modeling rigid, articulated, and deformable objects, their interactions with the physical world, and the estimate of their shape and motion from visual data. This book presents a large variety of methods and associated experiments in computer vision, graphics and medical imaging that help the reader better to understand the presented material. In addition, special emphasis has been given to the development of techniques with interactive or close to real-time performance. Physics-Based Deformable Models is suitable as a secondary text for graduate level courses in Computer Graphics, Computational Physics, Computer Vision, Medical Imaging, and Biomedical Engineering. In addition, this book is appropriate as a reference for researchers and practitioners in the above-mentioned fields.
The first volume in this series appeared in 1977, the second in 1980. From these volumes and the present one, some research trends in chemical communication can be perceived. In the 1977 volume, studies on 13 animal taxa were reported. In the present volume, the number is 25. This taxonomie diversi fication of research since the first volume of this series demon strates the wide variety of ecological adaptions, although no new general principles of chemical communication have ernerged. Further more, divergences in chemical comrnunication below the species level have become more apparent. In general, more sophisticated observa tions and techniques have led to greater awareness of the com plexities in chemical communication. As such awareness has also developed in the field of insect chemical communication, there has been a corresponding increase in the identification of the chemical compounds involved. However, in the vertebrates, no such correlation exists; in the present volume, conclusive chemical identifications of semiochemicals are remarkable by their paucity.
Derived from a course given at the University of Maryland for advanced graduate students, this book deals with some of the latest developments in our attempts to construct a unified theory of the fundamental interactions of nature. Among the topics covered are spontaneous symmetry breaking, grand unified theories, supersymmetry, and supergravity. the book starts with a quick review of elementary particle theory and continues with a discussion of composite quarks, leptons, Higgs bosons, and CP violation; it concludes with consideration of supersymmetric unification schemes, in which bosons and leptons are considered in some sense equivalent.||The third edition has been completely revised and brought up to date, particularly by including discussions of the many experimental developments in recent years.
Celestial fundamental catalogues are a prerequisite for the determination of absolute positions and motions in space. Presently, positional astrometry is at the watershed between classical fundamental catalogues, based on moving reference stars, and modern catalogues, based on extragalactic reference objects with non-measurable motion. This book addresses the concepts and methods of the respective construction techniques leading to the stellar frame of the FK5 (fifth fundamental catalogue) and to the newly adopted extragalactic radio reference frame, ICRF (international celestial reference frame), with its extension to optical wavelengths by the Hipparcos Catalogue. While principal outlines of meridian circle observations are given, emphasis is put in some detail on the VLBI technique as applied to astrometry, and to the observational techniques used in the Hipparcos mission, including the tie of the originally non-anchored rigid Hipparcos sphere into the ICRF.
A broad range of topics of current interest are discussed, from nuclear structure at the edge of stability to nuclear astrophysics and cosmic ray physics at the highest energies. Both the state of the art and basic background information are presented with a particular emphasis on interrelated research interests. The writers are all active scientists who enjoy the highest international reputation. They cover a range of problems of nuclear structure, in particular those concerning exotic nuclei and their decay modes, their relevance to nuclear reaction chains in stellar burning processes at various astrophysical sites, and as yet unsolved questions concerning the origin, acceleration mechanism, energy spectrum and elemental composition of high energy cosmic rays. Readership: Postgraduate physicists interested in the development of modern radioactive beam facilities, large array gamma ray and cosmic ray detectors, and new theoretical tools.
The scope of the book is to give an overview of the history of
astroparticle physics, starting with the discovery of cosmic rays
(Victor Hess, 1912) and its background (X-ray, radioactivity).
The book presents the most recent developments of laboratory studies in astrophysics and space research. The individual chapters review laboratory investigations under simulated space conditions, studies for the design of successful space experiments or for supporting the interpretation of astronomical and space mission recorded data. Related theoretical models, numerical simulations and in situ observations demonstrate the necessity of experimental work on the Earth's surface. The expertise of the contributing scientists covers a broad spectrum and is included in general overviews from fundamental science to recent space technology. The book intends to serve as a reference for researchers and graduate students on the most recent activities and results in laboratory astrophysics, and to give reviews of their applications in astronomy, planetology, cosmochemistry, space research and Solar System exploration.
This set of lectures deals with the transition from nuclear matter to quark matter. The reader will learn not only about the theory of quark-gluon plasmas but also how they are obtained in the laboratory through heavy-ion collisions or where they can be found in astrophysical objects such as compact stars. The book fills a gap between well-known textbook material and the research literature and is thus perfectly suited for postgraduate students who wish to enter this field, for lecturers looking for advanced material for their courses and for scientists in search of a modern source of reference on these topics.
A reprinting of eight articles from Surveys in geophysics, v.10, nos.2-4 (1989) on geophysical data processing. The topics include data sets from shear waves, which, generated by mode conversion, are used in solving reservoir problems; the zero-phase term, essential to further processing, and the d
For the fourth consecutive year, the Association of Geographic Infor- tion Laboratories for Europe (AGILE) promoted the edition of a book with the collection of the scientific papers that were submitted as full-papers to the AGILE annual international conference. Those papers went through a th competitive review process. The 13 AGILE conference call for fu- papers of original and unpublished fundamental scientific research resulted in 54 submissions, of which 21 were accepted for publication in this - lume (acceptance rate of 39%). Published in the Springer Lecture Notes in Geoinformation and Car- th graphy, this book is associated to the 13 AGILE Conference on G- graphic Information Science, held in 2010 in Guimaraes, Portugal, under the title "Geospatial Thinking." The efficient use of geospatial information and related technologies assumes the knowledge of concepts that are fundamental components of Geospatial Thinking, which is built on reasoning processes, spatial conc- tualizations, and representation methods. Geospatial Thinking is associated with a set of cognitive skills consisting of several forms of knowledge and cognitive operators used to transform, combine or, in any other way, act on that same knowledge. The scientific papers published in this volume cover an important set of topics within Geoinformation Science, including: Representation and Visualisation of Geographic Phenomena; Spatiotemporal Data Analysis; Geo-Collaboration, Participation, and Decision Support; Semantics of Geoinformation and Knowledge Discovery; Spatiotemporal Modelling and Reasoning; and Web Services, Geospatial Systems and Real-time Appli- tions."
th The 4 ESO CCO Workshop, Optical Detectors for Astronomy, was held during September 13-16, 1999 at its usual location, the headquarters of the European Southern Observatory in Garching, Germany. We prefer to remember this workshop as a "meeting of friends," who came to Garching to visit ESO and to present their work, rather than a formal meeting. Based on our experience with the 1996 ESO CCO workshop, we deliberately put emphasis on creating an environment that encouraged the participants to stay together and informally exchange ideas. These informal events began with a tour of the BWM auto factory and continued with a reception at "SchloB Beletic," the conference dinner at a real SchloB of the Bavarian International School (where the participants enjoyed basket, baseball, table soccer, rock climbing and eventually dancing) and concluded with a tour of the Paulaner Brewery and dinner at the Seehaus in the Englisher Garten. The lunch "Biergarten," adjacent to the poster session area, was a daily meeting point. The result was a good mixture of excellent presentations and posters, collected in these Proceedings, and many occasions for people to get in touch and to have fun together, as witnessed by the selection of workshop pictures that we randomly placed between papers. This book contains a special contribution.
Many new tests of gravity and, in particular, of Einstein's general relativity theory will be carried out in the near future: The Lense--Thirring effect and the equivalence principle will be tested in space; moreover, gravitational waves will be detected, and new atomic interferometers and clocks will be built for measurements in gravitational and inertial fields. New high-precision devices have made these experiments feasible. They will contribute to a better understanding of gravitational physics. Both experimental developments and the theoretical concepts are collected in this volume. Exhaustive reviews give an overall insight into the subject of experimental gravitation.
This book is a comprehensive description of hybrid plasma simulation models and will provide a very useful summary and guide to the vast literature on this topic. It addresses researchers and graduate students knowledgeable about computational science and numerical analysis, and can be used in courses on astrophysical and space plasmas. It is also meant for plasma installation designers. The coupled Vlasov--Maxwell equations with collisions describing well the physical system are far too heavy for numerical simulations. Hybrid models treat some aspects kinetically and some as fluids. In the first part the author discusses hybrid codes, which include a wide spectrum of description for ions, positrons, dust grains, atoms and electrons. In the second part he treats the applications to basic plasma phenomena like particle acceleration and dissipation processes as well as to the global interaction of the solar wind with nonmagnetic planets, comets, and the local interstellar medium. |
You may like...
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,129
Discovery Miles 51 290
The Arctic - A Barometer of Global…
Neloy Khare, Rajni Khare
Paperback
R2,821
Discovery Miles 28 210
|