![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.
In "Single Molecule Studies of Proteins," expert researchers discuss the successful application of single-molecule techniques to a wide range of biological events, such as the imaging and mapping of cell surface receptors, the analysis of the unfolding and folding pathways of single proteins, the analysis interaction forces between biomolecules, the study of enzyme catalysis or the visualization of molecular motors in action. The chapters are aimed at established investigators and post-doctoral researchers in the life sciences wanting to pursue research in the various areas in which single-molecule approaches are important; this volume also remains accessible to advanced graduate students seeking similar research goals.
This book deals with the adhesion, friction and contact mechanics of living organisms. Further, it presents the remarkable adhesive abilities of the living organisms which inspired the design of novel micro- and nanostructured adhesives that can be used in various applications, such as climbing robots, reusable tapes, and biomedical bandages. The technologies for both the synthesis and construction of bio-inspired adhesive micro- and nanostructures, as well as their performance, are discussed in detail. Representatives of several animal groups, such as insects, spiders, tree frogs, and lizards, are able to walk on (and therefore attach to) tilted, vertical surfaces, and even ceilings in different environments. Studies have demonstrated that their highly specialized micro- and nanostructures, in combination with particular surface chemistries, are responsible for this impressive and reversible adhesion. These structures can maximize the formation of large effective contact areas on surfaces of varying roughness and chemical composition under different environmental conditions.
Bangladesh faces many challenges. So long it has been mainly the traditional ones of socio economic development and eradication of poverty. Environment as a major factor in this process has only recently entered the scene. But even before environmental considerations in the development process has become the normal practice, the spectre of climate change has reared its ugly head. While Bangladesh is not unique among developing countries in being at the receiving end regarding the causes and consequences of climate change, both in the literal and allegorical sense of the term, the fact remains that it has made the prospects for sustainable socio-economic development in the country much more complex and formidable than before. Both for her own sake and the sake of the global community at large, therefore, Bangladesh has to initiate actions at various levels to face the challenge from now on. The present study is a part of that process. In 1996, the Governments of USA and Bangladesh together decided to initiate a comprehensive study on climate change in Bangladesh. A unique consortium of public and non-governmental research organisations with support from the relevant administrative arms of the Government carried out the study over 1996 and 1997. The report has been accepted by the Government and several of its recommendations are in the process of implementation. While the direction of climate change is broadly certain, its details leave much scope for speculation and interpretation."
The theory of stellar atmospheres is one of the most important branches of modern astrophysics. It is first of all a major tool for understanding all aspects of stars. As the physical properties of their outer layers can now be found with high precision, firm conclusions can be drawn about the internal structure and evolution of stars. Moreover, improvements in our knowledge of the chemical composition of stars is shedding new light on the chemical evolution of galaxies and of the Universe as a whole. Because the outer layers of stars are among the best-understood astrophysical objects, the theory of stellar atmospheres plays an important role in the study of many other types of objects. These include planetary nebulae, H II regions, interstellar matter, and objects of interest in high-energy astrophysics, such as accretion disks (close binaries, dwarf novae, cataclysmic variables, quasars, active galactic nuclei), pulsar magnetospheres, and Seyfert galaxies. Finally, as stars provide a laboratory in which plasmas can be studied under more extreme conditions than on earth, the study of stellar atmospheres has strong connections with modern physics. Astronomical observations provided a vital stimulus in the early stages of quantum theory and atomic physics; even today topics such as low-temperature dielectronic recombination develop hand in hand with the interpretation of stellar and nebular spectra. Early work on MHD was similiarly motivated. Many such connections remain to be explored.
The classical restricted three-body problem is of fundamental importance because of its applications in astronomy and space navigation, and also as a simple model of a non-integrable Hamiltonian dynamical system. A central role is played by periodic orbits, of which many have been computed numerically. This is the second volume of an attempt to explain and organize the material through a systematic study of generating families, the limits of families of periodic orbits when the mass ratio of the two main bodies becomes vanishingly small. We use quantitative analysis in the vicinity of bifurcations of types 1 and 2. In most cases the junctions between branches can now be determined. A first-order approximation of families of periodic orbits in the vicinity of a bifurcation is also obtained. This book is intended for scientists and students interested in the restricted problem, in its applications to astronomy and space research, and in the theory of dynamical systems.
Biological chemistry has changed since the completion of the human genome project. There is a renewed interest and market for individuals trained in biophysical chemistry and molecular biophysics. The Physical Basis of Biochemistry, Second Edition, emphasizes the interdisciplinary nature of biophysical chemistry by incorporating the quantitative perspective of the physical sciences without sacrificing the complexity and diversity of the biological systems, applies physical and chemical principles to the understanding of the biology of cells and explores the explosive developments in the area of genomics, and in turn, proteomics, bioinformatics, and computational and visualization technologies that have occurred in the past seven years. The book features problem sets and examples, clear illustrations, and extensive appendixes that provide additional information on related topics in mathematics, physics and chemistry.
In the never-ending quest for miniaturization, optically controlled particle trapping has opened up new possibilities for handling microscopic matter non-invasively. This thesis presents the application of photorefractive crystals as active substrate materials for optoelectronic tweezers. In these tweezers, flexible optical patterns are transformed into electrical forces by a photoconductive material, making it possible to handle matter with very high forces and high throughput. Potential substrate materials' properties are investigated and ways to tune their figures-of-merit are demonstrated. A large part of the thesis is devoted to potential applications in the field of optofluidics, where photorefractive optoelectronic tweezers are used to trap, sort and guide droplets or particles in microfluidic channels, or to shape liquid polymers into optical elements prior to their solidification. Furthermore, a new surface discharge model is employed to discuss the experimental conditions needed for photorefractive optoelectronic tweezers.
Molecules are found in a large variety of astronomical environments, ranging from comets in the solar system to galaxies at high redshift. This book brings together astronomers, physicists and chemists to discuss the use of molecules as probes of astrophysical parameters, explore their role in the evolution of astronomical objects, and study the basic chemical processes that occur in space. The enormous progress in observational techniques is illustrated by studies of the physics and chemistry on scales comparable to the protosolar nebulae around high- and low-mass forming stars and planetary systems. Elegant new experimental techniques for the measurement of gas-phase reactions at low temperatures, the analysis of spectra, and the investigation of surface adsorbates on interplanetary dust particles and meteorites are presented; the importance of accurate quantum chemical calculations is emphasized. Present knowledge of the composition of dust grains and polycyclic aromatic hydrocarbons is summarized. Other topics include models and observations of jets and outflows, photon- and X-ray-dominated regions, masers in and outside our galaxy, the comet D/Shoemaker-Levy collision with Jupiter, the envelopes and photospheres of late-type stars including brown dwarfs, diffuse and translucent clouds, and external galaxies ranging from the nearby Magellanic Clouds to distant quasar absorption line systems and starburst galaxies at the edge of the Universe.
Particularly intense lightning discharges can produce transient luminous events above thunderclouds, termed sprites, elves and jets. These short lived optical emissions in the mesosphere can reach from the tops of thunderclouds up to the ionosphere; they provide direct evidence of coupling from the lower atmosphere to the upper atmosphere. Sprites are arguably the most dramatic recent discovery in solar-terrestrial physics. Shortly after the first ground based video recordings of sprites, observations on board the Space Shuttle detected sprites and elves occurring all around the world. These reports led to detailed sprite observations in North America, South America, Australia, Japan, and Europe. Subsequently, sprites were detected from other space platforms such as the International Space Station and the ROCSAT satellite. During the past 15 years, more than 200 contributions on sprites have been published in the scientific literature to document this rapidly evolving new research area. The need for international information exchange was quickly recognized, and sprite sessions became a permanent feature with a constantly growing number of contributions in the scientific communities of the American Geophysical Union (AGU), the International Union of Radio Science (URSI), the International Association of Geomagnetism and Aeronomy (IAGA) and the European Geosciences Union EGU).
This volume consists of invited lectures and seminars presented at the NATO Advanced Study Institute "The Gamma Ray Sky with COMPTON GRO and SIGMA," which was held at the Centre de Physique Theorique of Les Houches (France) in January / February 1994. The school has been planned by a Scientific Organizing Committee. It was organized with the aim of providing students and young researchers with an up-to-date account of the high-energy phenomena in the vicinity of compact objets and the diffuse gamma-ray backgrounds after the early results from the gamma-ray telescope SIGMA and the four instruments onboard COMPTON GRO (Gamma Ray Observatory): BATSE (Burst and Transient Source Experiment), COMPTEL(Compto'l Telescope), EGRET (Energetic Gamma Ray Experiment Telescope) and OS SE(Oriented Scintillation Spectrometer Experiment) . It was attended by more than sixty researchers from many countries. The lectures and seminars represent a complete coverage of our present knowledge and understanding of: Gamma-ray backgrounds, Gamma-ray Burts, Active Galactic Nuclei, Galactic Compact Objects, Gamma-ray Spectroscopy, Instrumentation and observation techniques, etc ... Most of these lectures are reproduced in this volume. Unfortunately, a few lecturers have chosen not to submit their manuscript.
Landslide Risk Management comprises the proceedings of the International Conference on Landslide Risk Management, held in Vancouver, Canada, from May 31 to June 3, 2005. The first part of the book contains state-of-the-art and invited lectures, prepared by teams of authors selected for their experience in specific topics assigned to them by the JTC-1 Committee. The second part is a selection of papers submitted to the conference, most of which serve as case-history illustrations of projects on landslide risk management. This reference work presents the current status of landslide risk management as viewed by experts from around the world.
The general background of this monograph and the aim of it is described in detail in Chapter I. As stated in 1.7 it is written according to the principle that "when rigour appears to conflict with simplicity, simplicity is given preference," which means that it is intended for a rather broad public. Not only graduate students but also advanced undergraduates should be able to understand at least most of it. This monograph is the result of many years of inspiring discussions with a number of colleagues, for which I want to thank them very much. Especially I should mention the groups in Stockholm and La Jolla: in Stockholm, Dr Carl-Gunne Flilthammar and many of his collaborators, including Drs Lars Block, Per Carlqvist, Lennart lindberg, Michael Raadu, Staffan Torven, Miroslav Babic, and Itlgvar Axniis, and further, Drs Bo Lehnert and Bjorn Bonnevier, all at the Royal Institute of Technology. Of other col leagues in Sweden, I should mention Dr Bertel Laurent, Stockholm University, Dr Aina Elvius, The Stockholm Observatory, and Dr Bengt Hultqvist, Kiruna. In La Jolla my thanks go first of all to Dr Gustaf Arrhenius, who once invited me to La Jolla, which was the start of a most interesting collaboration; further, to Dr W. B."
This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.
Climate Change and Extreme Events uses a multidisciplinary approach to discuss the relationship between climate change-related weather extremes and their impact on human lives. Topics discussed are grouped into four major sections: weather parameters, hydrological responses, mitigation and adaptation, and governance and policies, with each addressed with regard to past, present and future perspectives. Sections give an overview of weather parameters and hydrological responses, presenting current knowledge and a future outlook on air and stream temperatures, precipitation, storms and hurricanes, flooding, and ecosystem responses to these extremes. Other sections cover extreme weather events and discuss the role of the state in policymaking. This book provides a valuable interdisciplinary resource to climate scientists and meteorologists, environmental researchers, and social scientists interested in extreme weather.
This book draws together a series of studies of spit geomorphology and temporal evolution from around the world. The volume offers some unique insights into how these landforms are examined scientifically and how we as humans impact them, offering a global perspective on spit genesis and evolution. Spits are unique natural environments whose evolution is linked to the adjacent coast and near shore morphology, sediment supply, coastal dynamics and sea-level change. Over the past century, Global Mean Sea Level (GMSL) has risen by 10 to 20 centimetres and many coastal spits represent the first sentinel against coastal submersion. Scientific research indicates that sea levels worldwide have been rising at a rate of 3.5 millimetres per year since the early 1990s, roughly twice the average speed of the preceding 80 years. This trend, linked to global warming will undoubtedly cause major changes in spit morphology. Spits are highly mobile coastal landforms that respond rapidly to environmental change. They therefore represent a signature of past environmental change and provide a landform indicator of climate change.
This second edition of a well-received book focuses on rhythmic behaviour in plants, which regulates all developmental and adaptive responses and can thus be regarded as quintessential to life itself. The chapters provide a timely update on recent advances in this field and comprehensively summarize the current state of knowledge concerning the molecular and physiological mechanisms behind circadian and ultradian oscillations in plants, their physiological implications for growth and development and adaptive responses to a dynamic environment. Written by a diverse group of leading researchers, the book will spark the interest of readers from many branches of science: from physicists and chemists wishing to learn about the multi-faceted rhythms in plants, to biologists and ecologists involved in the state-of-the-art modelling of complex rhythmic phenomena.
Not merely a discussion of small particles or clusters of atoms, molecules, but also the systems they constitute. The goal is to analyse the properties of such finite aggregates and their behaviour in gases and plasmas, and to investigate processes that involve such clusters, based on lectures and seminar problems for graduates. The main part of the book includes more than 200 problems, covering collisions, charge transfer, chemical reactions, condensed systems and their structures, kinetics of cluster growth, excited clusters, the transition from clusters to bulk particles, and small particles, dust, and aerosols in plasmas. Reference data for corresponding parameters of systems under consideration is given in the appendices. Of interest to physicists, astrophysicists, and chemists.
Simon Murphy's thesis has significant impact on the wide use of the revolutionary Kepler Mission data, leading to a new understanding in stellar astrophysics. It first provides a deep characterisation and comparison of the Kepler long cadence and short cadence data, with particular insight into the Kepler reduction pipeline. It then brings together modern reviews of rotation and peculiarities in A-type stars, and their relationship with the pulsating delta Scuti stars. This is the first combined review of these subjects since the classic monograph by Sydney Wolff, "The A stars," was published three decades ago. The thesis presents a novel technique, Super-Nyquist Asteroseismology, that has opened up the asteroseismic study of thousands of Kepler stars. It shows case studies of delta Scuti stars examining amplitude growth, super-Nyquist pulsation, and pulsation in a high-amplitude, population II SX Phoenicis star in a 343-d binary. This work informs our understanding of the relation of rotation to peculiarity, hence has applications to atomic diffusion theory. This is a brilliant thesis written in an elegant and engaging style.
Tutorials on Mossbauer Spectroscopy
This volume contains invited and refereed papers based upon presentations given in the IMA workshop on Computational Modeling in Biological Fluid Dynamics during January of 1999, which was part of the year-long program "Mathematics in Biology." This workshop brought together biologists, zoologists, engineers, and mathematicians working on a variety of issues in biological fluid dynamics. A unifying theme in biological fluid dynamics is the interaction of elastic boundaries with a surrounding fluid. These moving boundary problems, coupled with the equations of incompressible, viscuous fluid dynamics, pose formidable challenges to the computational scientist. In this volume, a variety of computational methods are presented, both in general terms and within the context of applications including ciliary beating, blood flow, and insect flight. Our hope is that this collection will allow others to become aware of and interested in the exciting accomplishments and challenges uncovered during this workshop.
Essentials of Medical Biochemistry, Third Edition offers a condensed, yet detailed overview of clinical biochemistry, spanning fundamentals and relevant physiologic and pathophysiologic concepts. Pivotal clinical case studies aid in understanding basic science in the context of diagnosis and treatment of human diseases, and the text illuminates key topics in molecular immunology and hemostasis. Users will find fundamental concepts aiding students and professionals in biochemistry, medicine, and other healthcare disciplines. The text is a useful refresher that will help users meet USMLE and other professional licensing examination requirements, providing thorough introductions, key points, multicolored illustrations of chemical structures and figures, fact-filled tables, and recommended reading lists. This Third Edition has been fully updated to address evolving techniques in the biological sciences, including genomics, metabolomics, transcriptomics, epigenomics, proteomics, and gene therapy, among other methods. In addition, each chapter has been fully revised for current science and now features learning objectives and chapter summaries, supplemental reading, and 5 clinical case based multiple choice questions. New clinical cases have been added throughout.
This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton's principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern-Gerlach effect is revisited for atomic and free electrons.
In a rapidly evolving field such as computational physics, six years is an eternity. Even though many of the elementary techniques described here are of venerable age, their assembly into sophisticated combined methods and their intensive application to ever new problems is an ongoing and exciting process. After six years, a new the new vistas edition of this textbook must therefore take into account some of that have opened up recently. Apart from these additions and some didactic improvements, the general struc ture of the book holds good. The first three chapters are devoted to a thorough, if concise, treatment of the main ingredients from numerical mathematics: finite differences, linear algebra, and stochastics. This exercise will prove valuable when we proceed, in chapters 4 and 5, to combine these elementary tools into powerful instruments for the integration of differential equations. The final chapters are devoted to a number of applications in selected fields: statistical physics, quantum mechanics, and hydrodynamics. I will gradually augment this text by web-resident sample programs. These will be written in JAVA and will be accompanied by short explanations and references to this text. Thus it may prove worthwhile to pay an occasional visit to my web-site www.ap.univie.ac.at/users/Franz.Vesely/ to see if any new applets have sprung up."
Analytical measurements at the single molecule level under ambient conditions have become almost routine in the past few years. The application of this technology to fundamental studies of heterogeneity in biomolecular structure and dynamics, chemical and biological reaction kinetics and photophysics provides a rich playground for molecular scientists. The potential use of single molecule detection for nanotechnology and quantum information processing is a new and almost unexplored area. This handbook is intended for those interested in a practical introduction to single molecule investigations using fluorescence techniques and places special emphasis on the practicalities of achieving single molecule resolution, analyzing the resulting data and exploration of the applications in biophysics. It is ideal for graduate research students and others embarking on work in this exciting field. |
You may like...
Heat Storage: A Unique Solution For…
Ibrahim Dincer, Mehmet Akif Ezan
Hardcover
R3,826
Discovery Miles 38 260
Force-Controlled Robotic Assembly…
Ibrahim Fahad Jasim Ghalyan
Hardcover
R2,671
Discovery Miles 26 710
Automotive Lighting and Human Vision
Burkard Woerdenweber, Joerg Wallaschek, …
Hardcover
R5,207
Discovery Miles 52 070
Heavy-Duty Electric Vehicles - From…
Shashank Arora, Alireza Tashakori Abkenar, …
Paperback
R3,337
Discovery Miles 33 370
|