![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics
Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach. The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.
This book presents methodological and application research in detecting cellular and molecular biophysical properties based on atomic force microscopy (AFM) nanorobotics. Series methods for in situ label-free visualizing and quantifying the multiple physical properties of single cells and single molecules were developed, including immobilization strategies for observing fine structures of living cells, measurements of single-cell mechanics, force recognition of molecular interactions, and mapping protein organizations on cell surface. The biomedical applications of these methods in clinical lymphoma treatments were explored in detail, including primary sample preparation, cancer cell recognition, AFM detection and data analysis. Future directions about the biomedical applications of AFM are also given.
Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. This second edition of the book is updated throughout and contains a completely new chapter discussing state of the art and results of numerical simulations of ergospheric disk jets occurring in magnetohydrodynamic accretion flows.
This unique volume contains the proceedings of two "Non-Sleeping Universe" conferences: "Stars and the ISM" and "From Galaxies to the Horizon." The book provides an overview of recent developments in a variety of areas, covering a very wide range of spatial and temporal scales.
Rationality - as opposed to 'ad-hoc' - and asymptotics - to emphasize the fact that perturbative methods are at the core of the theory - are the two main concepts associated with the Rational Asymptotic Modeling (RAM) approach in fluid dynamics when the goal is to specifically provide useful models accessible to numerical simulation via high-speed computing. This approach has contributed to a fresh understanding of Newtonian fluid flow problems and has opened up new avenues for tackling real fluid flow phenomena, which are known to lead to very difficult mathematical and numerical problems irrespective of turbulence. With the present scientific autobiography the author guides the reader through his somewhat non-traditional career; first discovering fluid mechanics, and then devoting more than fifty years to intense work in the field. Using both personal and general historical contexts, this account will be of benefit to anyone interested in the early and contemporary developments of an important branch of theoretical and computational fluid mechanics.
This interdisciplinary meeting has brought together a group of astrophysicists with hands-on experience in the numerical computation of astrophysical fluid dynamics, in particular nonlinear stellar pulsations, and a group of applied mathematicians who are actively engaged with the development of novel and improved numerical methods. The goal of the workshop has been for the astrophysicists to discuss in detail the numerical problems encountered in the modelling of stellar pulsations and for the mathematicians to present a survey of recent developments in numerical techniques. This astrophysical-mathematical intercourse will help the astrophysicists in the future development of more reliable and efficient codes, on the one hand, and it has introduced the mathematicians to an unfamiliar area which is a tough testing ground for their techniques. Since the difficulties encountered are common to other fluid dynamics problems, and are in fact perhaps more severe, fluid dynamicists in other research areas may fmd the results of this workshop of interest as well. Much of our theoretical understanding of the intricate and interesting behavior of variable stars rests on our ability to perform accurate numerical hydrodynamical computations of stellar models. Extensive calculations of nonlinear radial stellar pulsations with the use of increasingly powerful computers are showing more and more clearly that the numerical codes in current use have serious deficiencies.
This book is the proceedings of the 7th International Summer School on Biophysics: Supramolecular Structure and Function, held September 14-26, 2000, in Rovinj, Croatia. An enormous amount of new knowledge on the molecular basis of biological phenomena has emerged in the rapidly expanding field of biophysics. The principles and methods of modern biophysics now provide a strong foundation for all of the biosciences, and serve as a rational common language for scientists from various disciplines. The series of books on Supramolecular Structure and Function was inspired by the International Summer School on Biophysics, established under the sponsorship of IUPAB, UNESCO, and ICGEB, held in Rovinj, in 2001, and follows the successful interdisciplinary approach. This volume covers some powerful methods, such as analytical centrifugation, mass spectrometry, fluorescence spectroscopy, infrared spectroscopy, electron spin resonance and nuclear magnetic resonance, for the study of complex biological structures, and discusses useful physical concepts as applied to biological and biochemical systems. Case-orientated studies concentrating on particular methodologies are presented and examples are given, addressing some of the most important aspects of structure-function relationship in biological assemblies. Biophysics nowadays collaborates closely with molecular biology and bioinformatics as well as with neurosciences, and this is also demonstrated in this book. The book should be of interest both to experienced researchers wishing to widen their insight into molecular structure and function, and to younger scientists at the doctoral and postdoctoral level interested in the molecular nature offundamental biological entities and phenomena.
Maverick's Earth and Universe is about the true nature of Earth and Universe, and the way science should work, including a methodology more fundamental than the so-called scientific method.
The SECCHI A and B instrument suites (Howard et al. , 2006) onboard the two STEREO mission spacecraft (Kaiser, 2005) are each composed of: one Extreme Ultra-Violet Imager (EUVI), two white-light coronagraphs (COR1 and COR2), and two wide-angle heliospheric imagers (HI1 and HI2). Technical descriptions of EUVI, COR1 and the HIs can be found in Wuelser et al. (2004), Thompson et al. (2003), and De?se et al. (2003), respectively. The images produced by SECCHI represent a data visualization challenge: i) the images are 2048x2048 pixels (except for the HIs, which are usually binned onboard 2x2), thus the vast majority of computer displays are not able to display them at full frame and full r- olution, and ii) more importantly, the ?ve instruments of SECCHI A and B were designed to be able to track Coronal Mass Ejections from their onset (with EUVI) to their pro- gation in the heliosphere (with the HIs), which implies that a set of SECCHI images that covers the propagation of a CME from its initiation site to the Earth is composed of im- ?1 ages with very different spatial resolutions - from 1. 7 arcsecondspixel for EUVI to 2. 15 ?1 arcminutespixel for HI2, i. e. 75 times larger. A similar situation exists with the angular scales of the physical objects, since the size of a CME varies by orders of magnitude as it expands in the heliosphere.
Cognition and artificial intelligence are entering a new era in which the aspects of symbolic manipulation and of connectionism begin to come together. This leads to a dialog of truly interdisciplinary character. The book covers aspects of fuzzy logic, case based reasoning, learning as well as meaning, language, and consciousness. The authors of this topical volume have their background in logic, computer science, physics and mathematics, philosophy, psychology and neurobiology.
This book focuses on all of the major problems associated with the absence of body weight in space, by analyzing effects, adaption, and re-adaptation upon returning to Earth, using sound scientific principles embedded in a historical context. Serious problems for space travelers range from Space Motion Sickness (SMS) to recently discovered ocular effects that may permanently impair vision. Fluid loss and shifts, spinal changes, and bone and muscle loss are also all results of weightlessness. Starting with a brief definition and history of weightlessness, the authors then address in detail each problem as well as the countermeasures aimed at alleviating them. In some cases, alternative hypotheses regarding what can and should be attempted are also presented. As plans for long-term missions to the Moon and Mars develop, it will be essential to find countermeasures to weightlessness that are effective for missions that could span years.
The nature of dark matter remains one of the preeminent mysteries in physics and cosmology. It appears to require the existence of new particles whose interactions to ordinary matter are extraordinarily feeble. One well-motivated candidate is the axion, an extraordinarily light neutral particle that may possibly be detected by looking for their conversion to detectable microwaves in the presence of a strong magnetic field. This has led to a number of experimental searches that are beginning to probe plausible axion model space and may discover the axion in the near future. These proceedings discuss the challenges of designing and operating tunable resonant cavities and detectors at ultralow temperatures. The topics discussed here have potential application far beyond the field of dark matter detection and may be applied to resonant cavities for accelerators as well as designing superconducting detectors for quantum information and computing applications. This work is intended for graduate students and researchers interested in learning the unique requirements for designing and operating microwave cavities and detectors for direct axion searches and to introduce several proposed experimental concepts that are still in the prototype stage.
Mechanics plays a fundamental role in aeolian processes and other environmental studies. This proposed book systematically presents the new progress in the research of aeolian processes, especially in the research on mechanism, theoretical modelling and computational simulation of aeolian processes from the viewpoint of mechanics. Nowadays, environmental and aeolian process related problems are attracting more and more attention. We hope this proposed book will provide scientists and graduate students in aeolian research and other environmental research some mechanical methods and principles and introduce aeolian related problems of environment to mathematical and mechanical scientists.
Since the discovery by J. E. Lovelock, R. J. Maggs and R. A. Rasmussen, in 1972, of its ubiquity in sea water, dimethyl sulphide (DMS) , a biologically produced sulphur compound, has been the subject of continuously increasing interest by the scientific community. DMS was immediately recognized as an important component of the biogeochemical sulphur cycle, and is now indicated as the second most important source of sulphur in the atmosphere, after anthropogenic so emission from fossil fuel combustion and 2 industry. DMS reacts rapidly in the atmosphere where it is oxidized to condensable acidic sulphur products; in fact, rainwater acidification, observed in remote areas, is attributed to DMS emissions. The hypothesis of a climatic role of DMS was made already in 1983 by B. Shaw, and by B. C. Nguyen, B. Bonsang and A. Gaudry. In 1987, a study appeared in Nature, in. which R. J. Charlson, J. E. Lovelock, M. O. Andreae and S. G. Warren suggested the possibility of a partial control of the climate by the biosphere through a chain of processes, linking production of DMS by marine phytoplankton with changes in clouds albedo. The publication of this paper triggered a strong debate and stimulated new efforts to describe the various aspects of the DMS cycle in the environment. The paper was timely and added to the discussion on the relative roles of atmospheric sulphur and greenhouse gases in the Earth's radiative budget.
IAU Symposium 172 Dynamics, Ephemerides and Astrometry of the Solar System was held in Paris in July, 1995. 250 scientists from 33 countries attended the symposium; 24 invited lectures and 165 contributed papers were presented (117 of which were posters). The papers covered topics on celestial mechanics (chaos and evolution of the solar system, asteroids, theories of the motion of the planets, the moon and the natural satellites), methods (symplectic mappings and elliptic functions), astrometry (CCD observations, VLBI and radar observations), ephemerides (representation and numerical integration) and on the history of celestial mechanics.
This book presents a collection of reviews prepared for the conference "Atmosphere, Ionosphere, Safety," held in Kaliningrad, Russia, in July 2012. It provides the reader insight into the current developments in the following fields: physics of elementary processes; ionosphere dynamics; ball lightning and aerosol structures; as well as remote detection of the radioactive and highly toxic substances. The diversity of scope presented offers readers an up-to-date overview of trends, questions and their solutions.
The information received from BeppoSAX, Chandra and other instruments in the last two years has more than doubled the number of samples of Gamma-Ray Bursts localized and followed up for afterglow search. This has also increased the interest of astronomers in GRBs. This book reviews the research of the last two years and covers the global properties of GRBs, GRB afterglows, GRB host galaxies, cosmology using GRBs, and theories for GRBs and their afterglows. Theoretical and observational aspects are presented as well as tools for the analysis of the data.
This volume addresses the physical foundation of remote sensing. The basic grounds are presented in close association with the kinds of environmental targets to monitor and with the observing techniques. The book aims at plugging the quite large gap between the thorough and quantitative description of electromagnetic waves interacting with the Earth's environment and the user applications of Earth observation. It is intended for scientifically literate students and professionals who plan to gain a first understanding of remote sensing data and of their information content.
This volume is composed of extensive and detailed notes from the lectures given at the 40th Karpacz Winter School. This school focussed on quantum gravity phenomenology with emphasis on its relation to observational astrophysics and cosmology. These notes have been carefully edited with the aim to give advanced students and young researchers a balanced and accessible introduction to a rather heavily mathematical subject.
Computational modeling is emerging as a powerful new approach to study and manipulate biological systems. Multiple methods have been developed to model, visualize, and rationally alter systems at various length scales, starting from molecular modeling and design at atomic resolution to cellular pathways modeling and analysis. Higher time and length scale processes, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. This book provides an overview of the established computational methods used for modeling biologically and medically relevant systems.
Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented.
The theory of stochastic processes provides a huge arsenal of methods suitable for analyzing the influence of noise on a wide range of systems. Noise-induced, noise-supported or noise-enhanced effects sometimes offer an explanation for as yet open problems (information transmission in the nervous system and information processing in the brain, processes at the cell level, enzymatic reactions, etc.), or pave the way to novel technological applications. Noise can play a prominent role in structure formation in physics, chemistry and biology, e.g. current filaments in semiconductors, catalytic reactions on surfaces, complex dynamics of the heart, brain, or of ecosystems. The book reviews those aspects of applied stochastics addressing researchers as well as students.
This volume covers different aspects of recent theoretical and
observational work on magnetic reconnection, a fundamental
plasma-physical process by which energy stored in magnetic field is
converted, often explosively, into heat and kinetic energy. This
collection of papers from the fields of solar and space physics,
astrophysics, and laboratory plasma physics is especially timely in
view of NASA's upcoming Magnetospheric Multiscale mission, which
will use Earth's magetosphere as a laboratory to test, through
in-situ measurement of the plasma, energetic particles, and
electric and magnetic fields, the various and sometimes competing
models and theories of magnetic reconnection.
Aerosols play a critical role in a broad range of scientific disciplines, such as atmospheric chemistry and physics, combustion science, drug delivery and human health. This thesis explores the fundamentals of a new technique for capturing single or multiple particles using light, and for characterising these particles by Raman or fluorescence spectroscopy. The outcome of this research represents a significant development in optical manipulation techniques, specifically in optical tweezing. These findings can be applied to studies of the mass accommodation of gas-phase water molecules adsorbing onto a water surface. Not only is this a fundamental process of interest to physical chemists, but it is important for understanding the role of aerosol particles in the atmosphere, including their ability to become cloud droplets. This new strategy for investigating aerosol dynamics is fundamental in helping us understand the indirect effect of aerosols on the climate.
The moduli space Mg of curves of fixed genus g - that is, the algebraic variety that parametrizes all curves of genus g - is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory. |
![]() ![]() You may like...
Consumer Culture in Latin America
J. Sinclair, Anna Cristina Pertierra
Hardcover
R1,519
Discovery Miles 15 190
Handbook of US Consumer Economics
Andrew Haughwout, Benjamin Mandel
Paperback
R3,142
Discovery Miles 31 420
Analytic Number Theory, Approximation…
Gradimir V. Milovanovic, Michael Th Rassias
Hardcover
R4,553
Discovery Miles 45 530
Unconsciousness Between Phenomenology…
Dorothee Legrand, Dylan Trigg
Hardcover
R3,616
Discovery Miles 36 160
Anti-Communist Solidarity - US-Brazilian…
Larissa Rosa Correa
Hardcover
R3,035
Discovery Miles 30 350
Pearson Edexcel GCSE (9-1) Computer…
Ann Weidmann, Cynthia Selby, …
Paperback
R1,077
Discovery Miles 10 770
|