![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics
Mathematically, natural disasters of all types are characterized by heavy tailed distributions. The analysis of such distributions with common methods, such as averages and dispersions, can therefore lead to erroneous conclusions. The statistical methods described in this book avoid such pitfalls. Seismic disasters are studied, primarily thanks to the availability of an ample statistical database. New approaches are presented to seismic risk estimation and forecasting the damage caused by earthquakes, ranging from typical, moderate events to very rare, extreme disasters. Analysis of these latter events is based on the limit theorems of probability and the duality of the generalized Pareto distribution and generalized extreme value distribution. It is shown that the parameter most widely used to estimate seismic risk - Mmax, the maximum possible earthquake value - is potentially non-robust. Robust analogues of this parameter are suggested and calculated for some seismic catalogues. Trends in the costs inferred by damage from natural disasters as related to changing social and economic situations are examined for different regions. The results obtained argue for sustainable development, whereas entirely different, incorrect conclusions can be drawn if the specific properties of the heavy-tailed distribution and change in completeness of data on natural hazards are neglected. This pioneering work is directed at risk assessment specialists in general, seismologists, administrators and all those interested in natural disasters and their impact on society.
This book deals with the astrophysics and spectroscopy of the interstellar molecules. In the introduction, overview and history of interstellar observations are described in order to help understanding how the modern astrophysics and molecular spectroscopy have been developed interactively. The recent progress in the study of this field is briefly summarized. Furthermore, the basic knowledge of molecular spectroscopy, which is essential to correctly comprehend the astrophysical observations, is presented in a compact form.
This text comprises selected lectures presented in the 9th course of the International School of Cosmic-Ray Astrophysics held at the Ettore Majorana Centre in Erice, Sicily, May 7-18, 1994. Devoted to problems and prospects in high-energy astrophysics and cosmology, the major areas explored are: gamma- ray, X-ray, and neutrino astronomies; cosmic rays; pulsars and supernova remnants; and cosmology, as well as cosmogony. Among the principal developments in gamma-ray astrophysics are those generated by the Compton Gamma Ray Observatory. Cosmic neutrinos at MeV energies, i.e. those from the Sun and from Supernova 1987a are discussed, as well as neutrino masses in astrophysics. The source composition of cosmic rays and extensive air shower experiments receive special attention. The early universe according to COBE data, and as viewed by theorists of cosmology, is reviewed.
Unlike most natural colours that are based on pigment absorption, the striking iridescent and intense colouration of many butterflies, birds or beetles stems from the interaction of light with periodic sub-micrometer surface or volume patterns, so called "photonic structures". These "structural colours" are increasingly well understood, but they are difficult to create artificially and exploit technologically. In this thesis the field of natural structural colours and biomimetic photonic structures is covered in a wide scope, ranging from plant photonics to theoretical optics. It demonstrates diffractive elements on the petal surfaces of many flowering plant species; these form the basis for the study of the role of structural colours in pollinator attraction. Self-assembly techniques, combined with scale able nanofabrication methods, were used to create complex artificial photonic structures inspired by those found in nature. In particular, the colour effect of a Papilio butterfly was mimicked and, by variation of its design motive, enhanced. All photonic effects described here are underpinned by state-of-the-art model calculations.
This thesis focuses on the construction and application of an electron radiation belt kinetic model including various adiabatic and non-adiabatic processes. The terrestrial radiation belt was discovered over 50 years ago and has received a resurgence of interest in recent years. The main drivers of radiation belt research are the fundamental science questions surrounding its complex and dramatic dynamics and particularly its potential hazards posed to space-borne systems. The establishment of physics-based radiation belt models will be able to identify the contributions of various mechanisms, forecast the future radiation belt evolution and then mitigate its adverse space weather effects. Dr. Su is now an Professor works in Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China.
Since the discovery of X-rays and radioactivity, ionizing
radiations have been widely applied in medicine both for diagnostic
and therapeutic purposes. The risks associated with radiation
exposure and handling led to the parallel development of the field
of radiation protection. An extensive Part I deals with recent experimental and theoretical findings on radiation induced damage at the molecular level. It includes many contributions on electron and positroncollisions with biologically relevant molecules. X-ray and ion interactions are also covered. Part II addresses different approaches to radiation damage modelling. In Part III biomedical aspects of radiation effects are treated on different scales. After the physics-oriented focus of the previous parts, there is a gradual transition to biology and medicine with the increasing size of the object studied. Finally, Part IV is dedicated to current trends and novel techniques in radiation reserach and the applications hence arising. It includes new developments in radiotherapy and related cancer therapies, as well as technical optimizations of accelerators and totally new equipment designs, giving a glimpse of the near future of radiation-based medical treatments."
This book elaborates on the acceleration of charged particles with ultrafast terahertz electromagnetic radiation. It paves the way for new, and improves many aspects of current, accelerator applications. These include providing shorter electron bunches for ultrafast time-resolved pump-probe spectroscopy, enabling complex longitudinal profiles to be imparted onto charged particle bunches and significantly improving the ability to synchronise an accelerator to an external laser. The author has developed new sources of terahertz radiation with attractive properties for accelerator-based applications. These include a radially biased large-area photoconductive antenna (PCA) that provided the largest longitudinally polarised terahertz electric field component ever measured from a PCA. This radially biased PCA was used in conjunction with an energy recovery linear accelerator for electron acceleration experiments at the Daresbury Laboratory. To achieve even higher longitudinally polarised terahertz electric field strengths, and to be able to temporally tune the terahertz radiation, the author investigated generation within non-linear optical crystals. He developed a novel generation scheme employing a matched pair of polarity inverted magnesium-oxide doped stoichiometric lithium niobate crystals, which made it possible to generate longitudinally polarised single-cycle terahertz radiation with an electric field amplitude an order of magnitude larger than existing sources.
Eminent physicist and economist, Robert Ayres, examines the history of technology as a change agent in society, focusing on societal roots rather than technology as an autonomous, self-perpetuating phenomenon. With rare exceptions, technology is developed in response to societal needs that have evolutionary roots and causes. In our genus Homo, language evolved in response to a need for our ancestors to communicate, both in the moment, and to posterity. A band of hunters had no chance in competition with predators that were larger and faster without this type of organization, which eventually gave birth to writing and music. The steam engine did not leap fully formed from the brain of James Watt. It evolved from a need to pump water out of coal mines, driven by a need to burn coal instead of firewood, in turn due to deforestation. Later, the steam engine made machines and mechanization possible. Even quite simple machines increased human productivity by a factor of hundreds, if not thousands. That was the Industrial Revolution. If we count electricity and the automobile as a second industrial revolution, and the digital computer as the beginning of a third, the world is now on the cusp of a fourth revolution led by microbiology. These industrial revolutions have benefited many in the short term, but devastated the Earth's ecosystems. Can technology save the human race from the catastrophic consequences of its past success? That is the question this book will try to answer.
This volume presents recent advances in the research on meromictic lakes and a state-of-the art overview of this area. After an introduction to the terminology and geographic distribution of meromictic lakes, three concise chapters describe their physical, chemical and biological features. The following eight chapters present case studies of more than a dozen meromictic lakes, showing the variety of physical and biochemical processes that promote meromixis. The result is a broad picture of the ecology and biochemistry of meromictic lakes in tropical and cold regions, in man-made pit lakes and euxinic marine lakes, and in freshwater as well as hypersaline lakes. In the final chapter the editors provide a synthesis of the topic and conclude that the study of meromictic lakes also offers new insights into the limnology of inland lakes. The book appeals to researchers in the fields of ecology, limnology, environmental physics and biophysics.
This book summarizes the theoretical and experimental studies confirming the concept of the liquid-crystalline nature of boundary lubrication in synovial joints. It is shown that cholesteric liquid crystals in the synovial liquid play a significant role in the mechanism of intra-articular friction reduction. The results of structural, rheological and tribological research of the creation of artificial synovial liquids containing cholesteric liquid crystals in natural synovial liquids are described. These liquid crystals reproduce the lubrication properties of natural synovia and provide a high chondroprotective efficiency. They were tested in osteoarthritis models and in clinical practice.
This thesis adopts the relative back-projection method to dramatically reduce "swimming" artifacts by identifying the rupture fronts in the time window of a reference station; this led to a faster and more accurate image of the rupture processes of earthquakes. Mitigating the damage caused by earthquakes is one of the primary goals of seismology, and includes saving more people's lives by devising seismological approaches to rapidly analyze an earthquake's rupture process. The back-projection method described in this thesis can make that a reality.
The cryosphere encompasses all regions of the planet that experiences water in ice form for some portion of the year. In this book, authors Melody Sandells and Daniela Flocco deliver an introduction to the physics of the cryosphere.
The book focuses on the aqueous interface of biomolecules, a vital yet overlooked area of biophysical research. Most biological phenomena cannot be fully understood at the molecular level without considering interfacial behavior. The author presents conceptual advances in molecular biophysics that herald the advent of a new discipline, epistructural biology, centered on the interactions of water and bio molecular structures across the interface. The author introduces powerful theoretical and computational resources in order to address fundamental topics such as protein folding, the physico-chemical basis of enzyme catalysis and protein associations. On the basis of this information, a multi-disciplinary approach is used to engineer therapeutic drugs and to allow substantive advances in targeted molecular medicine. This book will be of interest to scientists, students and practitioners in the fields of chemistry, biophysics and biomedical engineering.
This thesis presents a study of strong stratification and turbulence collapse in the planetary boundary layer, opening a new avenue in this field. It is the first work to study all regimes of stratified turbulence in a unified simulation framework without a break in the paradigms for representation of turbulence. To date, advances in our understanding and the parameterization of turbulence in the stable boundary layer have been hampered by difficulties simulating the strongly stratified regime, and the analysis has primarily been based on field measurements. The content presented here changes that paradigm by demonstrating the ability of direct numerical simulation to address this problem, and by doing so to remove the uncertainty of turbulence models from the analysis. Employing a stably stratified Ekman layer as a simplified physical model of the stable boundary layer, the three stratification regimes observed in nature- weakly, intermediately and strongly stratified-are reproduced, and the data is subsequently used to answer key, long-standing questions. The main part of the book is organized in three sections, namely a comprehensive introduction, numerics, and physics. The thesis ends with a clear and concise conclusion that distills specific implications for the study of the stable boundary layer. This structure emphasizes the physical results, but at the same time gives relevance to the technical aspects of numerical schemes and post-processing tools. The selection of the relevant literature during the introduction, and its use along the work appropriately combines literature from two research communities: fluid dynamics, and boundary-layer meteorology.
This book is about the strategic relevance of quantum technologies. It debates the military-specific aspects of this technology. Various chapters of this book cohere around two specific themes. The first theme discusses the global pattern of ongoing civilian and military research on quantum computers, quantum cryptography, quantum communications and quantum internet. The second theme explicitly identifies the relevance of these technologies in the military domain and the possible nature of quantum technology-based weapons. This thread further debates on quantum (arms) race at a global level in general, and in the context of the USA and China, in particular. The book argues that the defence utility of these technologies is increasingly becoming obvious and is likely to change the nature of warfare in the future.
Polymers are essential to biology because they can have enough stable degrees of freedom to store the molecular code of heredity and to express the sequences needed to manufacture new molecules. Through these they perform or control virtually every function in life. Although some biopolymers are created and spend their entire career in the relatively large free space inside cells or organelles, many biopolymers must migrate through a narrow passageway to get to their targeted destination. This suggests the questions: How does confining a polymer affect its behavior and function? What does that tell us about the interactions between the monomers that comprise the polymer and the molecules that confine it? Can we design and build devices that mimic the functions of these nanoscale systems? The NATO Advanced Research Workshop brought together for four days in Bikal, Hungary over forty experts in experimental and theoretical biophysics, molecular biology, biophysical chemistry, and biochemistry interested in these questions. Their papers collected in this book provide insight on biological processes involving confinement and form a basis for new biotechnological applications using polymers. In his paper Edmund DiMarzio asks: What is so special about polymers? Why are polymers so prevalent in living things? The chemist says the reason is that a protein made of N amino acids can have any of 20 different kinds at each position along the chain, resulting in 20 N different polymers, and that the complexity of life lies in this variety.
This book is a synopsis of modern deep-field astronomy, based on the powerful telescopes and instruments developed in recent years. It is organized along topical themes, such as the extragalactic background radiation at different wavelengths, the evolution of galaxies, the history of star formation, the nature of absorbers, the reionization of the intergalactic medium, the validity of photometric redshifts, gravitational lensing, and clustering of galaxies. Stellar and substellar objects were not neglected, however, and one session was devoted to nearby bodies such as trans-Neptunian solar system objects, brown dwarfs, and stars with special characteristics.
This books aims at giving an overview over theoretical and phenomenological aspects of particle astrophysics and particle cosmology. To be of interest for both students and researchers in neighboring fields of physics, it keeps a balance between well established foundations that will not significantly change in the future and a more in-depth treatment of selected subfields in which significant new developments have been taking place recently. These include high energy particle astrophysics, such as cosmic high energy neutrinos, the interplay between detection techniques of dark matter in the laboratory and in high energy cosmic radiation, axion-like particles, and relics of the early Universe such as primordial magnetic fields and gravitational waves. It also contains exercises and thus will be suitable for both introductory and advanced courses in astroparticle physics.
This book presents lecture materials from the Third LOFAR Data School, transformed into a coherent and complete reference book describing the LOFAR design, along with descriptions of primary science cases, data processing techniques, and recipes for data handling. Together with hands-on exercises the chapters, based on the lecture notes, teach fundamentals and practical knowledge. LOFAR is a new and innovative radio telescope operating at low radio frequencies (10-250 MHz) and is the first of a new generation of radio interferometers that are leading the way to the ambitious Square Kilometre Array (SKA) to be built in the next decade. This unique reference guide serves as a primary information source for research groups around the world that seek to make the most of LOFAR data, as well as those who will push these topics forward to the next level with the design, construction, and realization of the SKA. This book will also be useful as supplementary reading material for any astrophysics overview or astrophysical techniques course, particularly those geared towards radio astronomy (and radio astronomy techniques).
The origin of the most energetic particles observed in nature is one of the major unresolved questions in modern astrophysics. Theoretical speculations range from electromagnetic acceleration in some unknown astrophysical source to as yet undiscovered particle physics beyond the Standard Model. These speculations have also lead to the development of new detection concepts and experimental projects, some of which are currently under construction. The present volume consists of a self-contained set of lectures which cover most of these aspects: from the speculative origins and the acceleration and propagation mechanisms to a discussion of the detection techniques. It emphasizes the strong interdisciplinarity of this topic and highlights the many open questions. This volume is intended for students entering this field and for professional astronomers and particle and theoretical physicists.
This book presents selected contributions from the 5th Conference on Optics within Life Sciences (OWLS). It is focused on the application of lasers and optics in biomedicine and the preservation of cultural heritage. Fourteen review papers and numerous related contributed papers give a survey of the state of the art in the application of lasers and optical methods in diagnostics, imaging, holography, interaction with biological tissues and preservation.
Emphasizing the physical and technological aspects of plant
energetics, this comprehensive book covers a significant
interdisciplinary research area for a broad range of investigators.
Plant Energetics presentsthe thermodynamics of energy processes in
plants, their interconnection and arrangement, and the estimation
of intrinsic energy needs of the plant connected with performing
various physiological functions. The book also demonstrates the
role of electrical and electrochemical processes in the plants life
cycle.
Cosmic rays consist of elementary particles with enormous energy which originate from outside our solar system and constantly hit the Earth's atmosphere. Where do these cosmic rays originate? How does nature accelerate the cosmic-ray particles to energies with orders of magnitude beyond the limits of manmade particle accelerators? What can we learn by measuring the interactions of the cosmic rays with the atmosphere? Digital radio-antenna arrays offer a promising, complementary measurement method for high-energy cosmic rays. This thesis reports on substantial advances in the development of the radio technique, which will be used to address these questions in future experiments. |
![]() ![]() You may like...
Reproductive Tissue Banking - Scientific…
Armand M. Karow, John K Critser
Hardcover
R6,555
Discovery Miles 65 550
Human Preimplantation Embryo Selection
Jacques Cohen, Kay Elder
Hardcover
R5,304
Discovery Miles 53 040
|