![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics
Geodesy as the science which determines the figure of the earth, its orientation in space and its gravity field as well as its temporal changes, produces key elements in describing the kinematics and the dynamics of the deformable body "earth". It contributes in particular to geodynamics and opens the door to decode the complex interactions between components of "the system earth". In the breathtaking development recently a whole arsenal of new terrestrial, airborne as well as satelliteborne measurement techniques for earth sciences have been made available and have broadened the spectrum of measurable earth parameters with an unforeseen accuracy and precision, in particular to resolve the factor time. The book focusses on these topics and gives a state of the art of modern geodesy.
This thesis presents significant new results on the problem of understanding the origin of dark energy in cosmology. The work develops an original approach based on modifications of General Relativity at cosmological scales, introducing non -local effective terms that can in principle emerge from fundamental local theories. Both the phenomenological consequences and theoretical aspects of the proposal are developed in depth. The thesis also contains significant new material compared to that published by the author in scientific journals.
The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.
Significant advances have been made recently in both the theoretical understanding and observation of small-scale turbulence in different layers of the Sun, and in the instabilities that give rise to them. The general development of solar physics, however, has led to such a degree of specialization as to hinder interaction between workers in the field. This book therefore presents studies of different layers and regions of the Sun, but from the same aspect, concentrating on the study of small-scale motions. The main emphasis is on the common theoretical roots of these phenomena, but the book also contains an extensive treatment of the observational aspects.
This volume contains the written versions of the lectures given at the 26th course of the renowned Saas-Fee series. The book represents a comprehensive and up-to-date review of the field of galaxy interaction. Nowadays, galaxies are no longer seen as immutable objects: they evolve, interact, merge, blaze, and reshape. Dynamic forces can induce powerful stellar activity able to transform the matter composition and morphology of galaxies. The lectures included in this book aim at a better understanding of these remarkable and fascinating phenomena. Though the book is intended for graduate students and young post-docs in astrophysics, it contains more advanced and original material, as well as historical perspectives, which will be of great interest to experts and astronomy teachers also.
This volume gives a comprehensive and integrated overview of current knowledge about cosmic rays in the heliosphere. It is the result of a workshop at ISSI, where experimental space physicists as well as theorists presented and discussed their views on the behaviour of cosmic rays during the currently prevalent solar minimum conditions, when the heliosphere has a well-ordered and relatively simple configuration. An unprecedented array of spacecraft - Ulysses, Pioneer, Voyager, IMP-8, Wind, to name a few - in conjunction with ever more sophisticated numerical models made this possible, gave us our first clear view of the three-dimensional heliosphere at solar minimum, and have significantly advanced our knowledge. The status of the field is first presented in a series of introductory papers; these are followed by four Working Group reports attempting to synthesise this knowledge, make progress in our understanding, and point out directions of future research. A summary of the parameters used in cosmic ray modulation and an epilogue on conditions and consequences expected at the upcoming solar maximum conclude the volume. The book is intended to provide active researchers in space physics with an up-to-date status report and also to introduce the advanced graduate student to the field.
Non-Newtonian properties on bubble dynamics and cavitation are fundamentally different from those of Newtonian fluids. The most significant effect arises from the dramatic increase in viscosity of polymer solutions in an extensional flow, such as that generated about a spherical bubble during its growth or collapse phase. In addition, many biological fluids, such as blood, synovial fluid, and saliva, have non-Newtonian properties and can display significant viscoelastic behaviour. This monograph elucidates general aspects of bubble dynamics and cavitation in non-Newtonian fluids and applies them to the fields of biomedicine and bioengineering. In addition it presents many examples from the process industries. The field is strongly interdisciplinary and the numerous disciplines involve have and will continue to overlook and reinvent each others' work. This book helps researchers to think intuitively about the diverse physics of these systems, to attempt to bridge the various communities involved, and to convey the interest, elegance, and variety of physical phenomena that manifest themselves on the micrometer and microsecond scales.
This volume contains the papers presented at the Third Alexander von Humboldt Colloquium on Celestial Mechanics. The papers cover a large range of questions, from the behaviour of dust particles to the stability of the solar system as a whole. The motions of asteroids and their classification into families are also discussed. Specific topics addressed are KAM theory, chaotic motions, resonances, Lyapunov characteristic exponents, perturbation theory and numerical integration.
The enormous advances in observational techniques over the last two decades has produced a wealth of data and unexpected discoveries which have helped to reshape astrophysics as a field with well-formulated theories and sophisticated numerical calculations. In nuclear particle physics, plasma physics, as well as in general relativity, the Universe has become a laboratory for cutting-edge research. The courses collected in the book are intended to provide students with this insight, giving a general background on each topic such as cosmic rays, nuclear and neutrino astrophysics, solar physics and strong fields, as well as a presentation of the current research and open problems. The book is aimed at graduate students in physics and astrophysics, as well as researchers, bridging a gap between the specialized reviews and the comprehensive books.
Foreword; J. Davies, D. Burstein. Introductory Remarks; M. Disney. Interstellar grain evolution and temperatures in spiral galaxies; J. Mayo Greenberg, A. Li. Radiative transfer models; G. Bruzual A. Radiative transfer in dusty galaxies; A.N. Witt. Opacity Diagnostics in spiral galaxies; N.D. Kylafis. Modeling dusty galaxies; G. Magris C., G. Bruzual A. Inclination-dependence of spiral galaxy physical properties: history and tests; D. Burstein, et al. Why a distance selection effect invalidates the Burstein, Haynes and Faber opacity test; J.I. Davies, et al. Statistical tests for opacity; E.A. Valentijn. Statistical measures of internal absorption in spiral galaxies; B. Cunow. The distribution of galactic inclinations; H. Jones, et al. Optical thickness of Sb-Scd galaxies from the Tully--Fisher relation; L. Gouguenhei, et al. Extinction in Sc galaxies at I band and in the 21cm line; R. Giovanelli. Extinction in the galaxy and in galactic discs; G. de Vaucouleurs. Properties of dust in backlit galaxies; W. Keel, R.E. White. The optical depth through NGC 3314A; P. James, P. Puxley. Dust extinction in highly inclined spirals; J. Knapen, et al. An optical search for dusty disks; M. Naslund, S. Joersater. Photometric asymmetry and dust opacity of spiral galaxies; Y.I. Byun. The scale-length test for dust in face-on spirals; J.E. Beckman, et al. Color gradients in spiral galaxies; S. Courteau, J. Holtzman. Constraints on the opacity of spiral disks from near-infrared observations; H.W. Rix. Arcsecond resolution of cold dust in spiral galaxies using optical and NIR imaging -- dust masses increase by nine hundred percent; D.L. Block, et al. Unveiling stars and dust in spiral galaxies;R.F. Pelletier, et al. Azimuthal distribution of dust in NGC 2997; P. Grosbol, et al. Internal extinction in spiral galaxies at optical and near infrared wavelengths; A. Boselli, G. Gavazzi. The opacity of spiral galaxy disks; N. Devereux. The far infrared/stellar energy balance; R. Evans. Opacity from luminosity functions; M. Trewhella, et al. Estimating disk opacities using infrared images; W. van Driel. DIRBE observations of galactic extinction; R.G. Arendt, et al. Kinematics of edge-on galaxies and the opacity of spiral disks; A. Bosma. Spectroscopic studies of the disk and halo of M82; C.D. McKeith, et al. Disk origin and evolution; J. Silk. The luminosity and opacity of galaxies; B. Wang. Dust obscuration in starburst galaxies; D. Calzetti. Polarimetry of dusty edge-on galaxies; R.D. Wolstencroft, S.M. Scarrott. HII regions and extinction in the spiral galaxy M83; S. Ryder, et al. A search for dust in galactic halos; D. Zaritsky. Concluding thoughts and reflections: dust in galaxies; H.A. Thronson Jr.
This book is written in a pedagogical style intelligible for graduate students. It reviews recent progress in black-hole and wormhole theory and in mathematical cosmology within the framework of Einstein's field equations and beyond, including quantum effects. This collection of essays, written by leading scientists of long standing reputation, should become an indispensable source for future research.
The aim of the book is to present, in a novel and unified fashion, the elements of Mechanics in Material Space or Configurational Mechanics, with applications to fracture and defect mechanics. This mechanics, in contrast to Newtonian mechanics in physical space, is concerned with defects such as cracks and dislocations, which are embedded in the material and might move in it. The level is kept accessible to any engineer, scientist or graduate student possessing some knowledge of calculus and partial differential equations, and working in the various areas where rational use of materials is essential.
Self-focusing has been an area of active scientific investigation for nearly 50 years. This book presents a comprehensive treatment of this topic and reviews both theoretical and experimental investigations of self-focusing. This book should be of interest to scientists and engineers working with lasers and their applications. From a practical point of view, self-focusing effects impose a limit on the power that can be transmitted through a material medium. Self-focusing also can reduce the threshold for the occurrence of other nonlinear optical processes. Self-focusing often leads to damage in optical materials and is a limiting factor in the design of high-power laser systems. But it can be harnessed for the design of useful devices such as optical power limiters and switches. At a formal level, the equations for self-focusing are equivalent to those describing Bose-Einstein condensates and certain aspects of plasma physics and hydrodynamics. There is thus a unifying theme between nonlinear optics and these other disciplines. One of the goals of this book is to connect the extensive early literature on self-focusing, filament-ation, self-trapping, and collapse with more recent studies aimed at issues such as self-focusing of fs pulses, white light generation, and the generation of filaments in air with lengths of more than 10 km. It also describes some modern advances in self-focusing theory including the influence of beam nonparaxiality on self-focusing collapse. This book consists of 24 chapters. Among them are three reprinted key landmark articles published earlier. It also contains the first publication of the 1964 paper that describes the first laboratory observation of self-focusing phenomena with photographic evidence.
Polarization Spectroscopy of Ionized Gases describes the physical principles of the technique and its applications to remote sensing. Transport phenomena and local anisotropies can be studied. The theoretical part of the book considers the basic phenomena of the ordering of the velocities of fast exciting charged particles. The polarization of the outer electron shells of excited atoms or molecules is described, and a variety of effects are examined in detail. An integral equation is derived which gives the intensity and polarization of emitted lines. Methods for solving the equation are analyzed. Universal spectropolarimetric remote sensing has been applied to low pressure gas discharges in the laboratory and to non-thermal processes in the solar atmosphere. For researchers interested in the remote sensing of ionized gases.
The principal objectives of the Project were to further the establishment of national "operational" weather radar networks, harmonise operations, data handling and processing to minimise the difficulties of, and maximise the benefits of international weather radar data exchange. To transmit the data efficiently, standardised formats and protocols were essential. These were formulated by a working group whose efforts were rewarded when WMO accepted their proposal for worldwide use. A multi-national pilot project area was established and streams of data from each of the countries involved were merged and integrated with data from the satelite METEOSAT. The composite image, known as "the COST image" was regularly distributed via the global telecommunication system of WMO, the public telephone switched network and the Olympus satelite. The utility of the COST image was assessed for, inter alia, short-period forecasting, aviation flight assistance, maritime forecasting and the initialisation of numerical weather prediction models. In all cases, the COST image was found to be beneficial. A report containing proposed curricula for the training of meteorologists, hydrologists and other major users of weather radar data was sent to WMO for possible adoption as one of their standard training manuals. As a report of international scientific cooperation, this is a success story. All the principal objectives of the Memorandum of Understanding were achieved both within time and budget. It is a tale of international cooperation at its best.
Significant advances in the scientific use of space based data were achieved in three joint interdisciplinary projects based on data of the satellite missions CHAMP, GRACE and GOCE within the R&D program GEOTECHNOLOGIEN. It was possible to explore and monitor changes related to the Earth's surface, the boundary layer between atmosphere and solid earth, and the oceans and ice shields. This boundary layer is our habitat and therefore is in the focus of our interests. The Earth's surface is subject to anthropogenetic changes, to changes driven by the Sun, Moon and planets, and by changes caused by processes in the Earth system. The state parameters and their changes are best monitored from space. The theme "Observation of the System Earth from Space" offers comprehensive insights into a broad range of research topics relevant to society including geodesy, oceanography, atmospheric science (from meteorology to climatology), hydrology and glaciology.
Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological systems, in particular proteins, do not exist in unique conformations but can assume a very large number of slightly different structures. This complexity is captured in the concept of a free energy landscape and leads to the conclusion that fluctuations are crucial for the functioning of biological systems. The final chapter of this section challenges the reader to apply these concepts to a problem that appears in the current literature. An extensive series of appendices (Part V) provide descriptions of the key physical tools and analytical methods that have proven powerful in the study of the physics of proteins. The appendices are designed to be consulted throughout the section on protein dynamics without breaking the deductive flow of the logic in the central section of the book.
Accelerated degradation of soils and surface waters produce increasing problems in many parts of the world. Within this context, the book addresses the topic Application of Physically Based Soil Erosion Models in order to present some essential tools for improving land-use strategies and conservation measures. Over the last 20 years, the need for more accurate assessments of soil losses and sediment yields has led to the development of some highly complex, process-based soil erosion models. In 14 papers, specialists from 5 European countries, the USA and Brazil report on practical applications of these models and give insight into the latest developments. This book will help to implement state-of-the-art soil erosion prediction technologies within soil and water conservation planning and assessment. Hence, the book should be of special interest to agricultural and environmental engineers, hydrologists, soil scientists and geoscientists.
The crystallization of proteins and nucleic acids and/or their complexes has become more highly automated but is still often a trial and error based approach. In parallel, a number of X-ray diffraction based techniques have been developed which explain the physical reasons limiting the resulting crystallographic data and thus show how that data may be improved. Crystal growth is also pivotal in neutron crystallography, which establishes the hydrogen and hydration aspects. Thus this book is aimed at addressing the science behind obtaining the best and most complete structural data possible for biological macromolecules, so that the detailed structural biology and chemistry of these important molecules emerge. Crystal imperfections such as twinning and lattice disorders, as well as multiple crystal situations, and their possible remedies, are also described. The small crystal frontier in micro-crystal crystallography, crystallites in powders and finally down to the proposed single molecule structure determination of X-ray lasers are covered. Overall this interdisciplinary book will interest crystal growers, X-ray and neutron physicists and the biological crystallographers, including graduate students.
Effective and ef cient modelling of in nite media is important for the production of accurate and useful solutions for many scienti c and engineering problems invo- ing in nite domains (Bettess 1977, 1980; Chow and Smith 1981; Medina and Taylor 1983; Zhang and Zhao 1987; Zhao et al. 1989; Zhao and Valliappan 1993a, b, c, d; Astley 1996, 1998; Yang et al. 1996; Yang and Huang 2001; Yun et al. 2000, 2007; Wang et al. 2006). Some typical examples involving in nite domains are as follows: (1) earthquake wave propagation within the upper crust of the Earth in the elds of geophysics and seismology; (2) dynamic structure-foundation interaction in the elds of geotechnical, civil and dam engineering; and (3) transient pore- uid ow, heat transfer and mass transport within the interior of the Earth in the elds of g- science and geoenvironmental engineering. Although the solid Earth is viewed as a bounded domain at the terrestrial scale, it can be treated as an unbounded domain at the human scale. For instance, in the case of predicting possible property damages caused by an earthquake, only a limited region around the epicentre is of interest because the earthquake wave energy is signi cantly reduced as the distance from the epicentre is increased.
The Constraint Equations.- The Penrose Inequality.- The Global Existence Problem in General Relativity.- Smoothness at Null Infinity and the Structure of Initial Data.- Status Quo and Open Problems in the Numerical Construction of Spacetimes.- The Einstein-Vlasov System.- Future Complete U(1) Symmetric Einsteinian Spacetimes, the Unpolarized Case.- Future Complete Vacuum Spacetimes.- The Cauchy Problem on Spacetimes That Are Not Globally Hyperbolic.- Cheeger-Gromov Theory and Applications to General Relativity.- Null Geometry and the Einstein Equations.- Group Actions on Lorentz Spaces, Mathematical Aspects: A Survey.- Gauge, Diffeomorphisms, Initial-Value Formulation, Etc.
Recent state-of-the-art technologies in fabricating low-loss optical and mechanical components have significantly motivated the study of quantum-limited measurements with optomechanical devices. Such research is the main subject of this thesis. In the first part, the author considers various approaches for surpassing the standard quantum limit for force measurements. In the second part, the author proposes different experimental protocols for using optomechanical interactions to explore quantum behaviors of macroscopic mechanical objects. Even though this thesis mostly focuses on large-scale laser interferometer gravitational-wave detectors and related experiments, the general approaches apply equally well for studying small-scale optomechanical devices. The author is the winner of the 2010 Thesis prize awarded by the Gravitational Wave International Committee.
Fundamental unsolved problems of stellar astrophysics include the effects of angular momentum on stellar structure and evolution, the nature and efficiency of the processes by which angular momentum is redistributed within and lost from stars, and the role that stellar rotation plays in enhancing or driving stellar mass loss. There appears to be a qualitative change in the nature and efficiency of these mechanisms near spectral type FO: hotter (more massive) stars typically retain more angular momentum at least until they reach the main sequence, while cooler stars typically spin down quickly. For the hotter stars, recent work suggests a strong link between the type of pulsation behavior, the mass loss rates, and the rotation velocity. If the same mechanisms are able to drive mass loss from the main sequence A stars, as has recently been proposed, then the current interpretations of a number of observations will be drastically affected: e. g. the ages of clusters may be incorrect by up to a factor of two, and the surface abundances of isotopes of He, Li and Be may no longer give constraints on cosmological nucleosynthesis. There are also effects on the evolution of the abundances of elements in the interstellar medium and on the general evolution of populations of stars. Thus the questions of the mechanisms of angular momentum and mass loss of stars more massive than the sun is important not only for stellar studies but for the foundations of much of modern astrophysics.
The book gathers the invited talks to the XIII JENAM conference, organized this time by the European Astronomical Society (EAS) and the Spanish Astronomical Society (SEA), and hosted by the Instituto de Astrofisica de Andalucia (CSIC). All branches of astrophysics are encompassed from the largest scales and cosmology to the solar system and the Sun, through the galaxies and the stars, including a section on astronomical instrumentation. Very relevant experts from all over the world speak in a single book about the most recent, exciting results from their fields in a way which is useful for both researchers in these fields and colleagues working in other disciplines. The book is accompanied by a CD-ROM including the remaining contributions of the meeting in PDF format, hence opening a wide panorama of what is going on in astrophysics nowadays.
The book reports an extended version of the lectures given by distinguished scholars at the workshop "Fault diagnosis and fault tolerance for dynamic systems" held in conjunction with the 2002 IEEE International Symposium on Intelligent Control in Vancouver, Canada, from 27-30 October 2002. The book collects some of the most recent results in fault diagnosis and fault tolerant systems with particular emphasis on mechatronic systems. Each chapter focuses on either theoretical aspects or applications to different fields of interest in mechatronics such as industrial robotics, underwater vehicles, hydraulic systems, and flight control. |
![]() ![]() You may like...
Tools of Chemistry Education Research
Diane M Bunce, Renee S. Cole
Hardcover
R5,642
Discovery Miles 56 420
Integrating Information Literacy into…
Charity Lovitt, Kristen Shuyler, …
Hardcover
R5,251
Discovery Miles 52 510
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,566
Discovery Miles 35 660
|