![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
Learn about the many biological and medical applications of ultrashort laser pulses. The authors highlight and explain how the briefness of these laser pulses permits the tracing of even the fastest processes in photo-active bio-systems. They also present a variety of applications that rely on the high peak intensity of ultrashort laser pulses. Easy-to-follow examples cover non-linear imaging techniques, optical tomography, and laser surgery.
Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: "What have we learned about the subject and how did we learn it?," "What are the most important open questions in this area?" and "What new tools, telescopes, observations, and calculations are needed to answer these questions?." All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups.
The second edition of Solar System Astrophysics: Background Science and the Inner Solar System provides new insights into the burgeoning field of planetary astronomy. As in the first edition, this volume begins with a rigorous treatment of coordinate frames, basic positional astronomy, and the celestial mechanics of two and restricted three body system problems. Perturbations are treated in the same way, with clear step-by-step derivations. Then the Earth's gravitational potential field and the Earth-Moon system are discussed, and the exposition turns to radiation properties with a chapter on the Sun. The exposition of the physical properties of the Moon and the terrestrial planets are greatly expanded, with much new information highlighted on the Moon, Mercury, Venus, and Mars. All of the material is presented within a framework of historical importance. This book and its sister volume, Solar System Astrophysics: Background Science and the Inner Solar system, are pedagogically well written, providing clearly illustrated explanations, for example, of such topics as the numerical integration of the Adams-Williamson equation, the equations of state in planetary interiors and atmospheres, Maxwell's equations as applied to planetary ionospheres and magnetospheres, and the physics and chemistry of the Habitable Zone in planetary systems. Together, the volumes form a comprehensive text for any university course that aims to deal with all aspects of solar and extra-solar planetary systems. They will appeal separately to the intellectually curious who would like to know how just how far our knowledge of the solar system has progressed in recent years.
The introduction of spin is believed to be a necessary tool if one wishes to quantize general relativity. Then the main problem is to see if the introduction of spin generalizing the general relativity from a geometric point of view, i.e. through the concept of torsion, can be experimentally verified. The reader can find in this book both theoretical and experimental arguments which show the necessity for the introduction of spin, and then of torsion, in gravity. In fact, torsion constitutes the more natural and simple way to introduce spin in general relativity. For that reason it is of fundamental importance to see if there are some experiences that indicate -- if not directly, then at least indirectly -- the presence of torsion. This book presents a discussion on experiments with a polarized-mass torsion pendulum, the search for galactic dark matter interacting with a spin pendulum, a description of a space-based method for determination of the gravitational constant and space-based measurements of spin in gravity, as well as a discussion on theoretical arguments, for instance the nature of torsion and nonmetricity, the viability of gravitational theories with spin -- torsion and spin-spin interaction, many-dimensional gravitational theories with torsion, spinors on curved spaces, the spinors in real space -- time, etc. We know that until now there has been no evidence for torsion, but this fact cannot prevent us from considering in some detail this implement of research that seems to be important from both a geometrical and a physical point of view.
Musical Sound, Instruments, and Equipment offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding.
This volume contains the proceedings of an international conference on Shocks in Astrophysics held at UMIST, Manchester, England from January 9-12, 1995. The study of interstellar and circumstellar gas dynamics has a long and distinguished history in Manchester and has been almost entirely concentrated in the school founded by Franz Kahn in the Astronomy Department, University of Manchester. In January 1993, one of us (AR) was appointed to the faculty of the Astrophysics Group in the Department of Mathematics at UMIST and astrophysical gas dynam ics became a major interest of the Group. The subject of this conference was chosen partly for the topicality of the subject matter and partly to help synthesise this expertise with the expertise in interstellar chemistry already present in the Group. The first fruits of this synthesis are contained in this volume. As it happened, this conference celebrated, not so much the beginnings of a long and fruitful collabo ration, but rather gave many of Alex's friends the chance to say a fond farewell as he departed UMIST at the end of January 1995 to take up a chair at UNAM, Mexico City. The core of this volume consists of twelve review articles, marked (R) in the list of contents, incorporating observational and theoretical studies of shock waves in a variety of situations from Herbig-Haro objects to Supernova Remnants to Active Galactic Nuclei. We have also included the contributed (C) and poster (P) papers."
In these lectures, I have discussed a number of basic concepts that provide the necessary background to the current studies of star formation. A ?rst partwas dedicatedto illustrate the conceptofa protostar, discussing con- tions and propertiesof the collapseof a molecular core. A secondpart deals with circumstellardisks. Disks areimportantnot only to the processofstar formation itself, but also because they are in all probability the site where planets form. The age range of pre-main-sequence stars coincides with the timescales for the formation of very large planetesimals, the building blocks of planets. Studies ofdisk properties in pre-main-sequencestars ofdi?erent age, located in star-forming regions of di?erent properties, may shed light on the characteristics of planet formation processes. ISO observations can provide important (in some cases, unique) inf- mation on the various stages of the star and planet formation. I have illustrated in detail some examples, when, to my knowledge, ISO data had been reduced and analyzed. Many other programs exist, and will certainly contribute to our understanding of star formation in the near future
Solar physics in India has a tradition that can be traced to the setting up of the Kodaikanal Observatory in 1899 when the Madras Observatory was relocated to a high altitude site with a view to initiate observations of the sun. This conference on Magnetic Coupling between the Interior and the Atmosphere of the Sun during 2-5 December 2008 was planned to coincide with centenary of the Evershed effect discovery at Kodaikanal in 1909. The aim of this meeting was to bring to a critical focus a comprehensive - derstanding of the important issues pertaining to solar magnetism with particular emphasis on the various MHD processes that operate in the solar atmosphere. The current status of magnetic eld measurements and their implications in the light of recenttheoriesandnumericalmodelingthataddressthe fundamentalscalesandp- cessesinthehighlymagnetizedturbulentplasmawerereviewedduringthismeeting. The meeting was timely for the following reasons: Space observations such as from SOHO and TRACE have provided a wealth of multiwavelength observations onprocessesoccurringinregionsofthe atmosphereextendingfromthe photosphere up to the outer corona. With the launch of Hinode and STEREO in 2006 and of SDO (Solar Dynamics Observatory) shortly, this conference provided a platform for in-depth discussions on new results from various space missions as well as a comparison with ground-based observing facilities such as the Swedish 1-m Solar Telescope. Using sophisticated image processing techniques, such telescopes r- tinelygenerateobservationswitharesolutionbetterthan0. 1arcsec,therebyyielding more informative diagnostics for instance of the microstructure of ux tubes.
Ferroelectric memories have changed in 10 short years from academic curiosities of the university research labs to commercial devices in large-scale production. This is the first text on ferroelectric memories that is not just an edited collection of papers by different authors. Intended for applied physicists, electrical engineers, materials scientists and ceramists, it includes ferroelectric fundamentals, especially for thin films, circuit diagrams and processsing chapters, but emphazises device physics. Breakdown mechanisms, switching kinetics and leakage current mechanisms have lengthly chapters devoted to them. The book will be welcomed by research scientists in industry and government laboratories and in universities. It also contains 76 problems for students, making it particularly useful as a textbook for fourth-year undergraduate or first-year graduate students.
This is the third volume in the series, in which the topic of the effects of radio frequencies on human tissue, now increasingly a concern with the prevalence of cell phones, is explored by Prof. Lin and other researchers. The impact of electromagnetics on imaging and cardiology, both very keen areas of research at present, is also explored.
Paperback. This publication contains 36 papers presented at four symposia during the Thirty-first COSPAR Scientific Assembly held in Birmingham, UK during 1996. Papers reflect the following symposia themes: life science support system studies; production, processing and waste recycling in a CELSS (Controlled Ecological Life Support System); biological effects of closure and recycling in a CELSS; nutrition and productivity for bioregenerative life support; integration of bioregenerative and physical/chemical processes for space life support systems. Findings presented in this volume will be a valuable resource for CELSS researchers for many years to come.
This book offers a unique review of how astronomical information handling (in the broad sense) evolved in the course of the 20th century, and especially during its second half. This volume is a natural complement to the book Information handling in astronomy published in the same series. The scope of these two volumes includes not only dealing with professional astronomical data from the collecting instruments (ground-based and space-borne) to the users/researchers, but also publishing, education and public outreach. In short, the information flow in astronomy is thus illustrated from sources (cosmic objects) to end (mankind's knowledge). The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information, as well as plenty of pointers and bibliographic elements. Especially enlightening are some lessons learned' sections.
Subrahmanyan Chandrasekhar - known simply as Chandra throughout the scientific world - has become a legendary figure for his prolific contributions to physics, astrophysics, and applied mathematics. Before his death in 1995, Chandra had forbidden a memorial of the conventional sort, celebrating his life. This book, which contains some thirty articles by his former students, his associates, and his colleagues, is in a sense a memorial volume. It says little about Chandra's great scientific achievements, but shows his human side and the various facets of his brilliant personality, his incredible memory, his wit, and the breadth of his knowledge of art, music, literature, and the humanities in general. The contributors to this highly interesting book are among the few who broke the seemingly forbidden barrier surrounding the very private Chandra and came to know him well in one context or another. They include Lalitha Chandrasekhar, Roger Penrose, Richard H Dalitz, J W Cronin, Robert G Sachs, Abhay Ashtekar, and Robert Wald.
The application to Biology of the methodologies developed in Physics is attracting an increasing interest from the scientific community. It has led to the emergence of a new interdisciplinary field, called Physical Biology, with the aim of reaching a better understanding of the biological mechanisms at molecular and cellular levels. Statistical Mechanics in particular plays an important role in the development of this new field. For this reason, the XXth session of the famous Sitges Conference on Statistical Physics was dedicated to "Physical Biology: from Molecular Interactions to Cellular Behavior." As is by now tradition, a number of lectures were subsequently selected, expanded and updated for publication as lecture notes, so as to provide both a state-of-the-art introduction and overview to a number of subjects of broader interest and to favor the interchange and cross-fertilization of ideas between biologists and physicists. The present volume focuses on three main subtopics (biological water, protein solutions as well as transport and replication), presenting for each of them the on-going debates on recent results. The role of water in biological processes, the mechanisms of protein folding, the phases and cooperative effects in biological solutions, the thermodynamic description of replication, transport and neural activity, all are subjects that are revised in this volume, based on new experiments and new theoretical interpretations.
Bringing together nanoscience with stem cell and bacterial cell biology, this thesis is truly interdisciplinary in scope. It shows that the creation of superparamagnetic nanoparticles inside a protein coat, followed by chemical functionalisation of the protein surface, provides a novel methodology for cell magnetisation using incubation times as short as one minute. Crucially, stem cell proliferation and multi-lineage differentiation capacity is not impaired after labelling. Due to the unspecific labelling mechanism, this thesis also shows that the same magnetic protein nanoparticles can be used for rapid bacterial magnetisation. Thus, it is possible to magnetically capture and concentrate pathogens from clinical samples quickly and highly efficiently.
The articles in this volume provide a detailed review of all aspects of the main magnetic field of the Earth produced within the Earth's core: its past history, its long and short term changes, the way it is generated. The book contains the combined knowledge of geomagnetism coming from paleomagnetic and archeomagnetic data, centuries of terrestrial observations and from the past few decades of intensive space observations. There is considerable emphasis on the phenomenology and the physical processes of the evolution of the geomagnetic field on different timescales. The book reports fully on our understanding of the present state of the magnetic field and its expected evolution in the future.
Kinetic Theory of granular Gases provides an introduction to the rapidly developing theory of dissipative gas dynamics as it has been developed mainly during the past decade. The book is aimed at readers from the advanced undergraduate level onwards and leads up to the present state of research. The text is self-contained, in the sense that no mathematical or physical knowledge is required that goes beyond standard undergraduate physics courses. The material is adequate for a one-semester course and contains chapter summaries as well as exercises with detailed solutions. Special emphasis is put on a microscopically consistent description of pairwise particle collisions which leads to an impact-velocity dependent coefficient of restitution. The description of the many-particle system, based on the Boltzmann equation, starts with the derivation of the velocity distribution function, followed by the investigation of self-diffusion and Brownian motion. Using hydrodynamical methods, transport processes and self-organized structure formulation are studies. An appendix gives a brief introduction to event-driven molecular dynamics. A second appendix describes a novel mathematical technique for the derivation of the kinetic properties which allows for the application of computer algebra. The book is accompanied by a web page where the molecular dynamics program as well as the computer-algebra programs are provided.
These pages present a collection of recent papers primarily documenting the nascent science of neutrino geophysics. Most of the papers followed from talks given at Neutrino Sciences 2005: Neutrino Geophysics held at the University of Hawaii in December 2005. Several papers were solicited later in an effort to make the collection as comprehensive as possible. Every paper was scrutinized by an external reviewer to assure the quality of scientific content.
Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This second volume of a two-volume series covers applications of the theory as well as experimental verifications. From tools to determine light travel times in curved space-time to laser ranging between earth and moon and between satellites, and impacts on the definition of time scales and clock comparison techniques, a variety of effects is discussed. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: J. Simon, A. Fienga: Victor Brumberg and the French school of analytical celestial mechanics T. Fukushima: Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy P. Teyssandier: New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order G2 J. Muller, L. Biskupek, F. Hofmann and E. Mai: Lunar laser ranging and relativity N. Wex: Testing relativistic celestial mechanics with radio pulsars I. Ciufolini et al.: Dragging of inertial frames, fundamental physics, and satellite laser ranging G. Petit, P. Wolf, P. Delva: Atomic time, clocks, and clock comparisons in relativistic spacetime: a review
This informative publication brings together knowledge of various
aspects of cellular regulation. Current Topics in Cellular
Regulation reviews the progress being made in those specialized
areas of study that have undergone substantial development. It also
publishes provocative new theories and concepts and serves as a
forum for the discussion of general principles. Researchers in
cellular regulation as well as biochemists, molecular and cell
biologists, microbiologists, and biophysicists will find Current
Topics in Cellular Regulation a useful source of up-to-date
information.
This book has grown out of lectures held at a summer school on cosmology, in response to an ever increasing need for an advanced textbook that addresses the needs of both postgraduate students and nonspecialist researchers from various disciplines ranging from mathematical physics to observational astrophysics. Bridging the gap between standard textbook material in cosmology and the forefront of research, this book also constitutes a modern source of reference for the experienced researcher in classical and quantum cosmology.
Edith Alicia M ller (1918-1995) was the IAU General Secretary from 1976 to 1979, the first woman to have this responsibility. Many friends, students and colleagues, and others who have met Edith at different occasions, give in this book their memories of her. Her fundamental work in solar physics concerned the chemical composition of the Sun, the time variation of its infra-red spectrum, and its thermal structure. Her interests were, however, far broader than that. She was heavily involved in international work for the teaching of astronomy and for the exchange program of young astronomers.
This book solves the open problems in fluid flow modeling through the fractured vuggy carbonate reservoirs. Fractured vuggy carbonate reservoirs usually have complex pore structures, which contain not only matrix and fractures but also the vugs and cavities. Since the vugs and cavities are irregular in shape and vary in diameter from millimeters to meters, modeling fluid flow through fractured vuggy porous media is still a challenge. The existing modeling theory and methods are not suitable for such reservoir. It starts from the concept of discrete fracture and fracture-vug networks model, and then develops the corresponding mathematical models and numerical methods, including discrete fracture model, discrete fracture-vug model, hybrid model and multiscale models. Based on these discrete porous media models, some equivalent medium models and methods are also discussed. All the modeling and methods shared in this book offer the key recent solutions into this area.
The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction - triboplasma - was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.
Birds and reptiles have long fascinated investigators studying hearing and the auditory system. The highly evolved auditory inner ear of birds and reptiles shares many characteristics with the ear of mammals. Thus, the two groups are essential in understanding the form and function of the vertebrate and mammalian auditory systems. Comparative Hearing: Birds and Reptiles covers the broad range of our knowledge of hearing and acoustic communication in both groups of vertebrates. This volume addresses the many similarities in their auditory systems, as well as the known significant differences about hearing in the two groups. |
You may like...
Visual Signal Quality Assessment…
Chenwei Deng, Lin Ma, …
Hardcover
The Proverbial Eugene O'Neill - An Index…
Geroge B. Bryan, Wolfgang Mieder
Hardcover
R2,296
Discovery Miles 22 960
|