![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics
This book presents lecture materials from the Third LOFAR Data School, transformed into a coherent and complete reference book describing the LOFAR design, along with descriptions of primary science cases, data processing techniques, and recipes for data handling. Together with hands-on exercises the chapters, based on the lecture notes, teach fundamentals and practical knowledge. LOFAR is a new and innovative radio telescope operating at low radio frequencies (10-250 MHz) and is the first of a new generation of radio interferometers that are leading the way to the ambitious Square Kilometre Array (SKA) to be built in the next decade. This unique reference guide serves as a primary information source for research groups around the world that seek to make the most of LOFAR data, as well as those who will push these topics forward to the next level with the design, construction, and realization of the SKA. This book will also be useful as supplementary reading material for any astrophysics overview or astrophysical techniques course, particularly those geared towards radio astronomy (and radio astronomy techniques).
The book focuses on two issues related to mathematical and numerical modelling of flow in unsaturated porous media. In the first part numerical solution of the governing equations is discussed, with particular emphasis on the spatial discretization of highly nonlinear permeability coefficient. The second part deals with large scale flow in heterogeneous porous media of binary structure. Upscaled models are developed and it is shown that the presence of material heterogeneities may give rise to additional non-equilibrium terms in the governing equations or to hysteresis in the averaged constitutive relationships.
The ARTEMIS mission was initiated by skillfully moving the two outermost Earth-orbiting THEMIS spacecraft into lunar orbit to conduct unprecedented dual spacecraft observations of the lunar environment. ARTEMIS stands for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun. Indeed, this volume discusses initial findings related to the Moon s magnetic and plasma environments and the electrical conductivity of the lunar interior. This work is aimed at researchers and graduate students in both heliophysics and planetary physics. Originally published in Space Science Reviews, Vol. 165/1-4, 2011."
Francis BACON, in his Novum Organum, Robert BOYLE, in his Skeptical Chemist and Rene DESCARTES, in his Discourse on Method; all of these men were witnesses to the th scientific revolution, which, in the 17 century, began to awaken the western world from a long sleep. In each of these works, the author emphasizes the role of the experimental method in exploring the laws of Nature, that is to say, the way in which an experiment is designed, implemented according to tried and tested te- niques, and used as a basis for drawing conclusions that are based only on results, with their margins of error, taking into account contemporary traditions and prejudices. Two centuries later, Claude BERNARD, in his Introduction to the Study of Experimental Medicine, made a passionate plea for the application of the experimental method when studying the functions of living beings. Twenty-first century Biology, which has been fertilized by highly sophisticated techniques inherited from Physics and Chemistry, blessed with a constantly increasing expertise in the manipulation of the genome, initiated into the mysteries of information techn- ogy, and enriched with the ever-growing fund of basic knowledge, at times appears to have forgotten its roots."
This book disseminates information on paper-based diagnostics devices and describes novel paper materials, fabrication techniques, and Basic Paper-based microfluidics/electronics theory. The section on sample preparation, paper-based electronics/sensors for developing paper-based point-of-care (POC) systems also contains detailed descriptions. In the application sections this book covers sensing technique for DNA/RNA, bacteria/virus and integration of lateral flow assay. The book provides deep understanding and knowledge of paper-based diagnostic device development in terms of concept, materials, fabrication and applications.
This book includes the proceedings of the Workshop held in Madrid, April 1999 to celebrate 2 years of successful operation of the first Spanish small scientific satellite in orbit. It contains discussions about the overall philosophy of small mission programs, the design of the satellite and its payload as well as the most relevant scientific outcome of the mission. Also included are additional contributions to the workshop, which are of importance to Minisat 01 in order to put its results within context. Finally, the future of small missions for space sciences is reviewed together with the main technological challenges for new studies. Out of the technological and scientific results of Minisat 01, the measurement of the EUV airglow spectrum and the flux of some stars in the same range can be highlighted together with the dismiss of the massive neutrino decay theory. The high-energy experiment analyzed the characterization of the radiation environment in LEO and the behaviour of different kind of detectors, as well as the use of coded masks for imaging and the measurement of some specific sources. The book's level is intended for specialists in EUV and Hard X-Ray astrophysicists as well as for engineers and technicians involved in space science experiments and missions.
This book discusses the various principles in confocal scanning microscopy which has become a useful tool in many practical fields including biological studies and industrial inspection. The methodology presented in this book is unique and is based on the concept of the three-dimensional transfer functions which have been developed by the author and his colleagues over the last five years. With the 3-D transfer functions, resolving power in 3-D confocal imaging can be defined in a unified way, different optical arrangements can be compared with an insight into their inter-relationship, and images of thick objects can be modeled in terms of the Fourier transform which makes the analysis easy. The aim of this book is to provide a systematic introduction to the concept of the 3-D transfer functions in various confocal microscopes, to describe the methods for the derivation of different 3-D transfer functions, and to explain the principles of 3-D confocal imaging in terms of these functions.
Muscle contraction has been the focus of scientific investigation for more than two centuries, and major discoveries have changed the field over the years. Early in the twentieth century, Fenn (1924, 1923) showed that the total energy liberated during a contraction (heat + work) was increased when the muscle was allowed to shorten and perform work. The result implied that chemical reactions during contractions were load-dependent. The observation underlying the "Fenn effect" was taken to a greater extent when Hill (1938) published a pivotal study showing in details the relation between heat production and the amount of muscle shortening, providing investigators with the force-velocity relation for skeletal muscles. Subsequently, two papers paved the way for the current paradigm in the field of muscle contraction. Huxley and Niedergerke (1954), and Huxley and Hanson (1954) showed that the width of the A-bands did not change during muscle stretch or activation. Contraction, previously believed to be caused by shortening of muscle filaments, was associated with sliding of the thick and thin filaments. These studies were followed by the classic paper by Huxley (1957), in which he conceptualized for the first time the cross-bridge theory; filament sliding was driven by the cyclical interactions of myosin heads (cross-bridges) with actin. The original cross-bridge theory has been revised over the years but the basic features have remained mostly intact. It now influences studies performed with molecular motors responsible for tasks as diverse as muscle contraction, cell division and vesicle transport.
This volume contains the Proceedings of the Fifth Scientific Meeting of the Spanish Astronomical Society (Sociedad Espanola de Astronomfa, SEA). The meeting was held at the Universidad de Castilla La Mancha in Toledo, from September 9 to 13, 2002. The event brought together 219 participants who pre sented their latest results in many different subjects. In comparison with the previous scientific meetings of the Society, the numbers of oral talks and poster contributions (122 and 64, respectively) are rapidly increasing, confirming that the SEA conferences are becoming a point of reference to assess the interests and achievements of astrophysical research in Spain. During the meeting, the SEA made public the granting of the Prize to the Best Spanish Ph. D. Thesis in As tronomy and Astrophysics for the period 2000-2001 ex aequo to Dr. A. Zurita and Dr. E. Villaver. This is the second time that the SEA is awarding this prize, which aim is to encourage young spanish astrophysicists to pursue a high level scientific career. The Society is indebted to the Universidad de Castilla La Mancha, and, in particular, to the San Pedro Martir staff, for its hospitality. It is also indebted to the Local Organizing Committee for its dedication and the good atmosphere that prevailed at any moment, and to the Scientific Organizing Committee for its excel lent work."
It is now well established that all living systems emit a weak but permanent photon flux in the visible and ultraviolet range. This biophoton emission is correlated with many, if not all, biological and physiological functions. There are indications of a hitherto-overlooked information channel within the living system. Biophotons may trigger chemical reactivity in cells, growth control, differentiation and intercellular communication, i.e. biological rhythms. Biophotonics is becoming one of the most fashionable fields in modern science and biotechnology. Biophotonics and Coherent Systems in Biology is an account of the original papers presented by the participants of the 3rd Alexander Gurwitsch Conference on the Biophotonics and Coherent Systems in Biology, Biophysics and Biotechnology which took place in Tauric University (Crimea, Ukraine) September 27-October 1, 2004.
This volume contains the proceedings of the meeting entitled, "The IGM/Galaxy Connection: The Distribution of Baryons at z = 0. " The meeting was held August 8 -10 at the National Center for Atmospheric Research (NCAR) located in Boulder, Colorado on the foothills of the Rocky Mountains (see conference photo). We organized this meeting because we felt it was time to address the link between galaxies and the intergalactic medium at low redshift. In this vein, we posed several questions to the conference participants: Where are the baryons in the local universe and in what phase do they reside? What signatures of galaxy evolution have been imprinted on the IGM? What percentage of intergalactic gas is left from the galaxy formation process? What does the distribution of baryons at z = 0 tell us about the early universe? The conference was an overwhelming success with lots of friendly interaction and discussion among the participants. At lunch we were treated to splendid views from the NCAR terrace and discussions rang ing from the importance of the LSR, GSR, and LGSR velocity frames to how long the desserts would last with 90 astronomers and the hot Boul der sun. From an inventory of the baryons, to the associations between galaxies and Lya absorbers, to the mechanisms by which galaxies obtain and lose gas, the conference covered many topics. The results of these endeavors are contained in these pages and eloquently summarized by Chris Impey."
People are immersed in electromagnetic fields from such sources as
power lines, domestic appliances, mobile phones, and even
electrical storms. All living beings sense electric fields, but the
physical origins of the phenomenon are still unclear.
Magnetobiology considers the effects of electromagnetic fields on
living organisms. It provides a comprehensive review of relevant
experimental data and theoretical concepts, and discusses all major
modern hypotheses on the physical nature of magnetobiological
effects. It also highlights some problems that have yet to be
solved and points out new avenues for research.
The aim of this book is to present the theory and applications of the relativistic Boltzmann equation in a self-contained manner, even for those readers who have no familiarity with special and general relativity. Though an attempt is made to present the basic concepts in a complete fashion, the style of presentation is chosen to be appealing to readers who want to understand how kinetic theory is used for explicit calculations. The book will be helpful not only as a textbook for an advanced course on relativistic kinetic theory but also as a reference for physicists, astrophysicists and applied mathematicians who are interested in the theory and applications of the relativistic Boltzmann equation.
The book is devoted to the problem of microgeometry properties and anisotropy relations in modern piezo-active composites. These materials are characterized by various electromechanical properties and remarkable abilities to convert mechanical energy into electric energy and vice versa. Advantages of the performance of the composites are discussed in the context of the orientation effects, first studied by the authors for main connectivity patterns and with due regard to a large anisotropy of effective piezoelectric coefficients and electromechanical coupling factors. The novelty of the book consists in the systematization results of orientation effects, the anisotropy of piezoelectric properties and their role in forming considerable hydrostatic piezoelectric coefficients, electromechanical coupling factors and other parameters in the composites based on either ferroelectric ceramic or relaxor-ferroelectric single crystals.
Conceptual Boundary Layer Meteorology: The Air Near Here explains essential boundary layer concepts in a way that is accessible to a wide number of people studying and working in the environmental sciences. It begins with chapters designed to present the language of the boundary layer and the key concepts of mass, momentum exchanges, and the role of turbulence. The book then moves to focusing on specific environments, uses, and problems facing science with respect to the boundary layer.
This book is about the strategic relevance of quantum technologies. It debates the military-specific aspects of this technology. Various chapters of this book cohere around two specific themes. The first theme discusses the global pattern of ongoing civilian and military research on quantum computers, quantum cryptography, quantum communications and quantum internet. The second theme explicitly identifies the relevance of these technologies in the military domain and the possible nature of quantum technology-based weapons. This thread further debates on quantum (arms) race at a global level in general, and in the context of the USA and China, in particular. The book argues that the defence utility of these technologies is increasingly becoming obvious and is likely to change the nature of warfare in the future.
This book presents simple interdisciplinary stochastic models meant as a gentle introduction to the field of non-equilibrium statistical physics. It focuses on the analysis of two-state models with cooperative effects, which are versatile enough to be applied to many physical and social systems. The book also explores a variety of mathematical techniques to solve the master equations that govern these models: matrix theory, empty-interval methods, mean field theory, a quantum approach, and mapping onto classical Ising models. The models discussed are at the confluence of nanophysics, biology, mathematics, and the social sciences and provide a pedagogical path toward understanding the complex dynamics of particle self-assembly with the tools of statistical physics.
This monograph presents a systematic treatment of the theory for hyperbolic conservation laws and their applications to vehicular traffics and crowd dynamics. In the first part of the book, the author presents very basic considerations and gradually introduces the mathematical tools necessary to describe and understand the mathematical models developed in the following parts focusing on vehicular and pedestrian traffic. The book is a self-contained valuable resource for advanced courses in mathematical modeling, physics and civil engineering. A number of examples and figures facilitate a better understanding of the underlying concepts and motivations for the students. Important new techniques are presented, in particular the wave front tracking algorithm, the operator splitting approach, the non-classical theory of conservation laws and the constrained problems. This book is the first to present a comprehensive account of these fundamental new mathematical advances.
Herbicide resistance has become an important constraint on modern agricultural practices. An alarming increase in weed biotypes that are resistant to herbicides has also been reported. Opportunity exists for a novel weed management technology, which is also compatible with no-till agricultural practices. Microwave heating can kill both emerged weed plants and weed seeds in the soil. When the intensity of the microwave fields is moderate, plants, which have already emerged, are susceptible to microwave treatment. If the microwave field is intense enough, very rapid volumetric heating and some thermal runaway in the plant structures cause micro-steam explosions in the plant cells, which rupture the plant structures, leading to death. Soil treatment requires significantly more energy; however, there are secondary benefits for crops growing in microwave treated soil. These include: significant reduction of the dormant weed seed bank; significant reduction of nematode populations; significant reduction of fungal populations; better availability of indigenous nitrogen for the plants; more rapid humification; and significant increases in crop growth and yield. Microwave weed management and soil treatment is not restricted by weather conditions; therefore, the technology may offer some timeliness and environmental benefits, which are yet to be quantified in a cropping system.
This text is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter introduces with progressively increasing detail, the fundamental concepts of plasma physic. The motion of individual charged particles in various configurations of electric and magnetic fields is detailed in the second chapter while the third chapter considers the collective motion of the plasma particles described according to a hydrodynamic model. The fourth chapter is most original in that it introduces a general approach to energy balance, valid for all types of discharges comprising direct current(DC) and high frequency (HF) discharges, including an applied static magnetic field. The basic concepts required in this fourth chapter have been progressively introduced in the previous chapters. The text is enriched with approx. 100 figures, and alphabetical index and 45 fully resolved problems. Mathematical and physical appendices provide complementary information or allow to go deeper in a given subject.
This biography summarizes the seminal contributions to auroral and space science of Carl Stormer (1874 - 1957). He was the first to develop precise photographic methods to calculate heights and morphologies of diverse auroral forms during four solar cycles. Stormer independently devised numerical techniques to determine the trajectories of high-energy charged particles allowed and forbidden in the Earth's magnetic field. His theoretical analyses explained cosmic ray access to the upper atmosphere, 20 years before they were identified by other scientists. Stormer's crowning achievement, "The Polar Aurora," published when he was 81 years old, stands to this day as a regularly cited guide in graduate-level courses on space physics. The authors present the life of this prodigious scientist in relation to the cultural life of early 20th century in Norway and to the development of the space sciences in the post-Sputnik era.
The book discusses the ideas and creates a framework for building
toward a theory of paleoclimate. Using the rich and mounting array
of observational evidence of climatic changes from geology,
geochemistry, and paleontology, Saltzman offers a dynamical
approach to the theory of paleoclimate evolution and an expanded
theory of climate.
These Proceedings contain the papers presented at the 1stAsian
Pacific Congress on "Computational Mechanics" held in Sydney, on
20-23 November 2001.
This book covers the subject of Biological Effects of EMF in its entirety. First it covers both high and low frequency effects, explains thoroughly the mechanisms of interaction between EMF and biological systems and provides the necessary mathematical modeling for EMF absorption. Experimental verification of the theoretical results is given when at all possible and it is expected to open new areas of research as well as provide the material for university course creation. Topics as Ion Cyclotron Resonance in biological systems, thermal and dissipation effects of mobile system radiation, effects of transmission lines and railway radiation, effects on the reproductive capacity of specific insects, on the immune systems on embryos and fetuses, blood parameters and behavior of rats, as well as health risk assessment and the therapeutic effects of EMF are thoroughly covered.
Composed of a set of lectures and tutorial reviews, this book stems from a summer school devoted to the gravitational aspects of the sun and their geophysical consequences. Contribitions elaborate on the gravitational distortions of the sun which can be used to gain some knowledge of the sun's interior and surface phenomena but which also influences the sun's irradience and thus ultimately the earth's climate. Last but not least, it is shown that these small distortions constitute a formidable challenge to solar astrometry, and the final part of the book describes the observational difficulties in defining unequivocally the solar diameter. |
![]() ![]() You may like...
Intelligent Computer Graphics 2012
Dimitri Plemenos, Georgios Miaoulis
Hardcover
R2,905
Discovery Miles 29 050
Multi-faceted Deep Learning - Models and…
Jenny Benois-Pineau, Akka Zemmari
Hardcover
R4,935
Discovery Miles 49 350
Intelligent Computer Graphics 2009
Dimitri Plemenos, Georgios Miaoulis
Hardcover
R2,886
Discovery Miles 28 860
Multi-Modality Imaging - Applications…
Mauren Abreu de Souza, Humberto Remigio Gamba, …
Hardcover
R4,372
Discovery Miles 43 720
|