![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics
This review of the most up-to-date observational and theoretical information concerning the chemical evolution of the Milky Way compares the abundances derived from field stars and clusters, giving information on the abundances and dynamics of gas.
The accretion process is thought to play a key role in the Universe. This book explains, in a form intelligible to graduate students, its relation to the formation of new stars, to the energy release in compact objects and to the formation of black holes. The monograph describes how accretion processes are related to the presence of jets in stellar objects and active galactic nuclei and to jet formation. The authors treat theoretical work as well as current observational facts. This volume of the highly esteemed Les Houches series is meant as an advanced text that can serve to attract students to exciting new research work in astrophysics.
In the context of the NASA Deep Impact space mission, comet 9P/Tempel1 has been at the focus of an unprecedented worldwide long-term multi-wavelength observation campaign. The comet was also studied throughout its perihelion passage by various sources including the Deep Impact mission itself, the Hubble Space Telescope, Spitzer, Rosetta, XMM and all major ground-based observatories in a wavelength band from cm-wave radio astronomy to x-rays. This book includes the proceedings of a meeting that brought together an audience of theoreticians and observers - across the electromagnetic spectrum and from different sites and projects - to make full use of the massive ground-based observing data set. The coherent presentation of all data sets illustrates and examines the various observational constraints on modelling the cometary nucleus, cometary gas, cometary plasma, cometary dust, and the comet's surface and its activity.
We stand at the threshold of an exciting era of Asteroseismology. In a few months' time, the Canadian small-satellite asteroseismology mission MOST will be laun ched. Danish and French missions MONS and COROT should follow, with the ESA mission Eddington following in 2007/8. Helioseismology has proved spec tacularly successful in imaging the internal structure and dynamics of the Sun and probing the physics of the solar interior. Ground-based observations have detected solar-like oscillations on alpha Centauri A and other Sun-like stars, and diagnostics similar to those used in helioseismology are now being used to test and constrain the physics and evolutionary state of these stars. Multi-mode oscillations are being observed in an abundance of other stars, including slowly pulsating B stars (SPB stars), delta Scuti stars, Ap stars and the pulsating white dwarfs. New classes of pulsators continue to be discovered across the Hertzsprung-Russell diagram. For good reason it was decided to entitle our conference 'Asteroseismology Across the HR Diagram' . Yet the challenges still to be faced to make asteroseismology across the HR diagram a reality are formidable. Observation, data analysis and theory all pose hard problems to be overcome. In conceiving this meeting, the aim of the organisers was to facilitate a cross-fertilization of ideas and approaches between researchers working on different pulsators and with different areas of expertise. We venture to suggest that in this the conference was a great success."
Networks can provide a useful model and graphic image useful for the description of a wide variety of web-like structures in the physical and man-made realms, e.g. protein networks, food webs and the Internet. The contributions gathered in the present volume provide both an introduction to, and an overview of, the multifaceted phenomenology of complex networks. Statistical Mechanics of Complex Networks also provides a state-of-the-art picture of current theoretical methods and approaches.
Refrigeration plays a prominent role in our everyday lives, and cryogenics plays a major role in medical science, space technology and the cooling of low-temperature electronics. This volume contains chapters on basic refrigeration systems, non-compression refrigeration and cooling, and topics related to global environmental issues, alternative refrigerants, optimum refrigerant selection, cost-quality optimization of refrigerants, advanced thermodynamics of reverse-cycle machines, applications in medicine, cryogenics, heat pipes, gas-solid absorption refrigeration, multisalt resorption heat pumps, cryocoolers, thermoacoustic refrigeration, cryogenic heat transfer and enhancement and other topics covering theory, design, and applications, such as pulse tube refrigeration, which is the most efficient of all cryocoolers and can be used in space missions.
The 2008 Spring Meeting of the Arbeitskreis Festkorperphysik was held in Berlin, Germany, between February 24 and February 29, 2008 in conjunction with the 72nd Annual Meeting of the Deutsche Physikalische Gesellschaft. The 2008 meeting was the largest physics meeting in Europe and among the largest physics meetings in the world in 2008."
This textbook provides students with a solid introduction to the techniques of approximation commonly used in data analysis across physics and astronomy. The choice of methods included is based on their usefulness and educational value, their applicability to a broad range of problems and their utility in highlighting key mathematical concepts. Modern astronomy reveals an evolving universe rife with transient sources, mostly discovered - few predicted - in multi-wavelength observations. Our window of observations now includes electromagnetic radiation, gravitational waves and neutrinos. For the practicing astronomer, these are highly interdisciplinary developments that pose a novel challenge to be well-versed in astroparticle physics and data-analysis. The book is organized to be largely self-contained, starting from basic concepts and techniques in the formulation of problems and methods of approximation commonly used in computation and numerical analysis. This includes root finding, integration, signal detection algorithms involving the Fourier transform and examples of numerical integration of ordinary differential equations and some illustrative aspects of modern computational implementation. Some of the topics highlighted introduce the reader to selected problems with comments on numerical methods and implementation on modern platforms including CPU-GPU computing. Developed from lectures on mathematical physics in astronomy to advanced undergraduate and beginning graduate students, this book will be a valuable guide for students and a useful reference for practicing researchers. To aid understanding, exercises are included at the end of each chapter. Furthermore, some of the exercises are tailored to introduce modern symbolic computation.
While the emergence and evolution of solar surface magnetic flux reveals what goes on in the solar interior, the interplay of convection and magnetic field in the photosphere regulates the field dispersal and drives the instabilities which heat the outer solar atmosphere. This book presents a synthesis between observers and theorists, both with regard to the magnetic elements which make up solar magnetic fields (ranging from tiny flux tubes to whole active regions), and to the surface patterns in which these elements display properties of the subsurface dynamo. A major breakthrough comes from numerical simulations. Modelling of flux concentration, flux tube dynamics, penumbral toplogy, umbral fine structure, and so on, turns solar physics into an experimental science. The reviews and research papers in this volume provide an overview of the solar frontier of astrophysical magnetohydrodynamics. The elements and patterns of solar surface magnetism contain much information about the subsurface solar dynamo, as well as on the magnetically-dominated energy budget and structuring of the outer solar atmosphere. The volume treats high-resolution solar polarimetry, the physics of solar magnetic elements, and the information contained in their patterns of emergence on the solar surface in depth, with a balance between theoretical and observational studies.
The book describes first the principle photon generation processes from nuclear reactions, electron motion and from discrete quantum transitions. It then focuses on the use of photons in various selected fields of modern natural and life sciences. It bridges disciplines such as physics, chemistry, earth- and materials science, proteomics, information technology, photoelectrochemistry, photosynthesis and spintronics. Advanced light sources and their use in natural and life sciences are emphasized and the effects related to the quantum nature of photons (quantum computing, teleportation) are described. The content encompasses among many other examples the role of photons on the origin of life and on homochirality in biology, femtosecond laser slicing, photothermal cancer therapy, the use of gamma rays in materials science, photoelectrochemical surface conditioning, quantum information aspects and photo-spintronics. The book is written for scientists and graduate students from all related disciplines who are interested in the science beyond their immediate research field. It is meant to encourage interdisciplinary research and development in an age where nanoscience results in a convergence of formerly more disparate science.
This textbook is for mathematicians and mathematical physicists and is mainly concerned with the physical justification of both the mathematical framework and the foundations of the theory of general relativity. Previous knowledge of the relevant physics is not assumed. This book is also suitable as an introduction to pseudo-Riemannian geometry with emphasis on geometrical concepts. A significant part of the text is devoted to the discussion of causality and singularity theorems. The insights obtained are applied to black hole astrophysics, thereby making the connection to current active research in mathematical physics and cosmology.
This book addresses current activities in strong-motion networks around the globe, covering issues related to designing, maintaining and disseminating information from these arrays. The book is divided in three principal sections. The first section includes recent developments in regional and global ground-motion predictive models. It presents discussions on the similarities and differences of ground motion estimations from these models and their application to design spectra as well as other novel procedures for predicting engineering parameters in seismic regions with sparse data. The second section introduces topics about the particular methodologies being implemented in the recently established global and regional strong-motion databanks in Europe to maintain and disseminate the archived accelerometric data. The final section describes major strong-motion arrays around the world and their historical developments. The last three chapters of this section introduce projects carried out within the context of arrays deployed for seismic risk studies in metropolitan areas. Audience: This timely book will be of particular interest for researchers who use accelerometric data extensively to conduct studies in earthquake engineering and engineering seismology.
Dramatic progress is a trademark of the recent study of globular cluster systems. Considerations about the formation and evolution compose the first chapter, followed by a chapter on young star clusters. Then come four chapters reviewing the globular cluster system of early-type, late-type and dwarf galaxies, as well as of groups of galaxies. One chapter is dedicated to stellar population models and their applications to the field. Finally a chapter reviews the kinematics of galaxies derived from globular cluster systems and another their role in the context of galaxy formation and evolution studies. As a whole, the book gives an up-to-date view of the field at the beginning of the new decade, which will without doubt again bring significant progress in our understanding of globular cluster systems and galaxy formation and evolution.
This doctoral thesis applies measurements of ground deformation from satellite radar using their potential to play a key role in understanding volcanic and magmatic processes throughout the eruption cycle. However, making these measurements is often problematic, and the processes driving ground deformation are commonly poorly understood. These problems are approached in this thesis in the context of the Cascades Volcanic Arc. From a technical perspective, the thesis develops a new way of using regional-scale weather models to assess a priori the influence of atmospheric uncertainties on satellite measurements of volcano deformation, providing key parameters for volcano monitoring. Next, it presents detailed geodetic studies of two volcanoes in northern California: Medicine Lake Volcano and Lassen Volcanic Centre. Finally, the thesis combines geodetic constraints with petrological inputs to develop a thermal model of cooling magma intrusions. The novelty and range of topics covered in this thesis mean that it is a seminal work in volcanic and magmatic studies.
This volume documents the contributions presented at the III Scientific Meeting of the Spanish Astronomical Society (SEA). Covering a wide range of topics, the 92 contributed papers give a comprehensive overview of the current state of Spanish astronomy. The Proceedings include special reviews dealing with the cosmological evolution of star-forming galaxies, the nature of cosmic gamma-ray bursts, infrared astrophysics with ISO, and the distance scale after Hipparcos, with special emphasis on the development of the next generation of instruments to propel astrophysical research into the new century. The contents of these Proceedings thus reflect the broad interests of the Spanish astronomical community. The significance of these proceedings can hardly be exaggerated, since here, for the first time, the SEA publishes the proceedings of its own scientific meeting. The intended audience is professional astronomers and graduate astronomy students worldwide.
Many of the ISO observers who assembled for this workshop at Ringberg c- tle met for the third time in the Bavarian Alps. At two previous meetings in 1989 and 1990 surveys were only a minor topic. At that time we were excited by the discoveries of the IRAS survey mission and wanted to follow it up with pointed observations using an observatory telescope equipped with versatile instruments. With the rapid development of detector arrays and stimulated by ISO's Observing Time Allocation Committee, however, surveys eventually became an issue for the upcoming mission. In a review paper on "Infrared S- veys - the Golden Age of Exploration" given at an IAU meeting in 1996, Chas Beichman already mentioned that there are ISO surveys. They were at the bottom of his hit list, while the winners were future space missions (Planck, SIRTF, etc. ) and ground-based surveys in preparation (Sloan, 2MASS, DE- NIS, etc. ). He organized his table according to the relative explorable volume, calculated from the solid angle covered on the sky and the maximum distance derived from the detection sensitivity. Clearly, with this ?gure of merit, ISO, as a pointed observatory, is rated low. Applying the classical de?nition of a survey, i. e. to search in as large a volume as possible for new or rare objects and/or study large numbers of objects of various classes in order to obtain statistical properties, ISO was indeed limited.
As a research subject, the biomechanics of the urinary bladder are relatively young, yet medical problems associated with them are as old as mankind. Offering an update on recent achievements in the field, the authors highlight the underlying biological, chemical and physical processes of bladder function and present the systematic development of a mathematical model of the organ as a thin, soft biological shell. The book will be a valuable resource for postgraduate students and researchers interested in the applications of computational mathematics and solid mechanics to modern problems in biomedical engineering and medicine.
Advancement in the field of nanotechnology has revolutionized the field of medicines and pharmaceuticals in the twentieth century. The proper use of nanomaterials in medical applications requires a proper understanding of these compounds. This correct understanding, beyond the physical and chemical properties, must also have the correct logic of use. In other words, the strategic use of nanomaterials with applicable perspective can also help to advance research, but if we go forward with the current research perspective that leads to the expansion of inapplicable researches, the intrinsic importance of using these nanomaterials is eliminated. This book, considering the importance of nanomaterials and their application in medicine, as well as the significant growth of biomaterials in research fields, introduces the variables law (Rabiee's theory) for the implementation of this research and the establishment of a proper strategy. Considering that the degree of number of biomaterial and host variables follow a variety factors, and by increasing the degree of number of biomaterials and host variables, the degree of total variables also increases and as a result, performance and, consequently, biomaterial behavior in the host environment will have less control and predictive capabilities. For an external substance that is supposed to be in the human body, it must be predictable and controllable, In addition, according to the principle that the host in a fixed person does not have the ability to change, therefore, by using the simpler biomaterials (with less variables), the above goal is more accessible. It should be noted that in addition to observing biocompatibility tests for a biomaterial based on existing protocols and standards, the Applicable Compatibility (AC) parameter is also required in accordance with Rabiee's theory. This book is written in accordance with Rabiee's theory and the contents of this book should be evaluated from this perspective.
This thesis reports on the development of the first quantum enhanced microscope and on its applications in biological microscopy. The first quantum particle-tracking microscope, described in detail here, represents a pioneering advance in quantum microscopy, which is shown to be a powerful and relevant technique for future applications in science and medicine. The microscope is used to perform the first quantum-enhanced biological measurements -- a central and long-standing goal in the field of quantum measurement. Sub diffraction-limited quantum imaging is achieved, also for the first time, with a scanning probe imaging configuration allowing 10-nanometer resolution.
In this book the author extends the concepts previously introduced in his "Quantum Field Theory in Condensed Matter Physics" to situations in which the strong electronic correlations are crucial for the understanding of the observed phenomena. Starting from a model field theory to illustrate the basic ideas, more complex systems are analysed in turn. A special chapter is devoted to the description of antiferromagnets, doped Mott insulators and quantum Hall liquids from the point of view of gauge theory. This advanced text is written for graduate students and researchers working in related areas of physics.
Over the past decade, numerous books have attempted to explain ions in aqueous solutions in relation to biophysical phenomena. Ions in Water and Biophysical Implications, from Chaos to Cosmos offers a physicochemical point of view of the spread of this matter and suggests innovative solutions that will challenge the biophysics research establishment. Starting with a throughout discussion of the properties of liquid water, in particular as a structured liquid with an extensive hydrogen bonded structure, the book examines water as a solvent for gases, non-electrolytes, and electrolytes and reviews the properties, sizes and thermodynamics of isolated and aqueous ions, as well as their interactions, including those of polyelectrolytes. The effects of ions on water structure, including those on solvent dynamics and certain thermodynamic quantities, are presented. This volume investigates water surfaces with its vapour, with another liquid, and with a solid, as well as the effects of solutes, including simple ions and the water-miscible non-electrolytes. Surfaces are relevant to biomolecular and colloidal systems and the book discusses briefly surfactants, micelles and vesicles. Finally, the book concludes with a review of the various biophysical implications involving chaotropic and kosmotropic ions in homogeneous solutions and the Hofmeister series for ions concerning biomolecular and colloidal systems and some aspects of protein hydration and K+/Na+ selectivity in ion channels. Ions in Water and Biophysical Implications, from Chaos to Cosmos will appeal to physical chemists, biophysicists, biochemists, as well as to all students and researchers involved in the study of aqueous solutions.
This is a comprehensive book, easily accessible to those who have a fairly good knowledge of special relativity and electromagnetic theory. It is ideal for introducing students to the study of gravitation and relativity following a modern presentation.
The Second Volume of Equilibrium between Phases of Matter, when compared with the First Volume, by H.A.J. Oonk and M.T. Calvet, published in 2008, amounts to an extension of subjects, and a deepening of understanding. In the first three sections of the text an extension is given of the theory on isobaric binary systems. The fourth section gives an account of the thermodynamic analyses of four isobaric binary key systems, highlighting the power of empirical, (exo)thermodynamic correlations. The fifth section is devoted to the thermodynamic description of ternary systems. The last three sections concentrate on the properties of materials, and the phase behaviour of systems under the conditions of high temperature and high pressure conditions that prevail in the interior of the Earth. A new equation of state is the subject of the sixth section. In the seventh section a move is made to statistical thermodynamics and vibrational models; the description of the systems has changed from mathematical to physical. The last section is on the system MgO SiO2, looked upon from a geophysical point of view. Throughout the work high priority is given to the thermodynamic assessment of experimental data; numerous end-of-section exercises and their solutions are included. Along with the First Volume, the work is useful for materials scientists and geophysicists as a reference text. Audience Volume II is a lecture book for postgraduate students in chemistry, chemical engineering, geology and metallurgy. It is highly useful as a recommended text for teachers and researchers in all fields of materials science. "
The book introduces readers to and summarizes the current ideas and theories about the basic mechanisms for transport in chaotic flows. Typically no single paradigmatic approach exists as this topic is relevant for fields as diverse as plasma physics, geophysical flows and various branches of engineering. Accordingly, the dispersion of matter in chaotic or turbulent flows is analyzed from different perspectives. Partly based on lecture courses given by the author, this book addresses both graduate students and researchers in search of a high-level but approachable and broad introduction to the topic.
Magnetic fields are responsible for much of the variability and structuring in the universe, but only on the Sun can the basic magnetic field related processes be explored in detail. While several excellent textbooks have established a diagnostic foundation for exploring the physics of unmagnetized stellar atmospheres through spectral analysis, no corresponding treatise for magnetized stellar atmospheres has been available. The present monograph fills this gap. The theoretical foundation for the diagnostics of stellar magnetism is developed from first principles in a comprehensive way, both within the frameworks of classical physics and quantum field theory, together with a presentation of the various solar applications. This textbook can serve as an introduction to solar and stellar magnetism for astronomers and physicists at the graduate or advanced undergraduate level and will also become a resource book for more senior scientists with a general interest in cosmic magnetic fields. |
![]() ![]() You may like...
Evidence For Jesus - Timeless Answers…
Josh McDowell, Sean McDowell
Paperback
R334
Discovery Miles 3 340
Good Enough - 40ish Devotionals for a…
Kate Bowler, Jessica Richie
Hardcover
The WellBeauty - A guide to your beauty…
Heyyoung Kim, Robert Kim
Hardcover
R585
Discovery Miles 5 850
|