![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
The "European Experiment on the Transport and Transformation of Environmentally Relevant Trace Constituents over Europe" (EUROTRAC) was established in 1986 to tackle the scientific problem and combine the expertise, knowledge and resources in Europe, in order to apply them over a large region covering the greater part of the continent. EUROTRAC is a coordinated multidisciplinary scientific research project involving field measurements, laboratory studies, instrument development and development of comprehensive computer models for the simulation of the physical and chemical processes in the lower atmosphere.
Generalising Newton's law of gravitation, general relativity is one of the pillars of modern physics. While applications in the beginning were restricted to isolated effects such as a proper understanding of Mercury's orbit, the second half of the twentieth century saw a massive development of applications. These include cosmology, gravitational waves, and even very practical results for satellite based positioning systems as well as different approaches to unite general relativity with another very successful branch of physics - quantum theory. On the occassion of general relativity's centennial, leading scientists in the different branches of gravitational research review the history and recent advances in the main fields of applications of the theory, which was referred to by Lev Landau as "the most beautiful of the existing physical theories". Contributions from: Andy C. Fabian, Anthony L. Lasenby, Astrophysical black Holes Neil Ashby, GNSS and other applications of General Relativity Gene Byrd, Arthur Chernin, Pekka Teerikorpi, Mauri Vaaltonen, Observations of general Relativity at strong and weaks limits Ignazio Ciufolini, General Relativity and dragging of inertial frames Carlo Rovelli, The strange world of quantum spacetime
These pages present a collection of recent papers primarily documenting the nascent science of neutrino geophysics. Most of the papers followed from talks given at Neutrino Sciences 2005: Neutrino Geophysics held at the University of Hawaii in December 2005. Several papers were solicited later in an effort to make the collection as comprehensive as possible. Every paper was scrutinized by an external reviewer to assure the quality of scientific content.
In a distilled and pedagogical fashion, the contributions to this volume of the famous summer school in Les Houches cover the recent developments in supersymmetric string theory, the gauge theory/string theory correspondence and string duality. Further chapters deal with quantum gravity and D-brane geometry. Black hole mechanics and cosmology are treated too, as well as the AdS-CFT correspondence. The book is a comprehensive introduction to the recent developments in string/M-theory and quantum gravity. It addresses graduate students in physics and astrophysics.
The articles in this volume provide a detailed review of all aspects of the main magnetic field of the Earth produced within the Earth's core: its past history, its long and short term changes, the way it is generated. The book contains the combined knowledge of geomagnetism coming from paleomagnetic and archeomagnetic data, centuries of terrestrial observations and from the past few decades of intensive space observations. There is considerable emphasis on the phenomenology and the physical processes of the evolution of the geomagnetic field on different timescales. The book reports fully on our understanding of the present state of the magnetic field and its expected evolution in the future.
A Mathematical Approach to Special Relativity introduces the mathematical formalisms of special and general relativity. Developed from the author's experience teaching physics to students across all levels, the valuable resource introduces key concepts, building in complexity and using increasingly advanced mathematical tools as it progresses. Without assuming a background in calculus, the text begins with symmetry, before delving more deeply into Galilean relativity. Throughout, the book provides examples and useful "Guides to the Literature." This unique text emphasizes the experimental consequences and verifications of the underpinning theory in order to provide students with a solid foundation in this key area.
Fundamentals of Atmospheric Physics emphasizes the
interrelationships of physical and dynamical meteorology. The text
unifies four major subject areas: atmospheric thermodynamics,
hydrostatic equilibrium and stability, atmospheric radiation and
clouds, and atmospheric dynamics. These fundamental areas serve as
cornerstones of modern atmospheric research on environmental issues
like global change and ozone depletion. Physical concepts
underlying these subject areas are developed from first principles,
providing a self-contained text for students and scholars from
diverse backgrounds. * Presents a comprehensive introduction to atmospheric
thermodynamics, hydrostatics, radiation and clouds, and
dynamics
Edith Alicia M ller (1918-1995) was the IAU General Secretary from 1976 to 1979, the first woman to have this responsibility. Many friends, students and colleagues, and others who have met Edith at different occasions, give in this book their memories of her. Her fundamental work in solar physics concerned the chemical composition of the Sun, the time variation of its infra-red spectrum, and its thermal structure. Her interests were, however, far broader than that. She was heavily involved in international work for the teaching of astronomy and for the exchange program of young astronomers.
This textbook deals with the requirements of space physics. The first part starts with a description of the Earth's plasma environment, followed by a derivation of single particle motions in electromagnetic fields, with applications to the Earth's magnetosphere. Then the origin and effects of collisions and conductivities, formation of the ionosphere, magnetospheric convection and dynamics, and solar wind-magnetosphere coupling are discussed. The second part of the book presents a more theoretical foundation of plasma physics, starting from kinetic theory. Introducing moments of the distribution function permits derivation of the fluid equations, followed by an analysis of fluid boundaries, with the Earth's magnetopause and bow shock as examples. Finally, fluid and kinetic theory are applied to derive the relevant wave modes in a plasma. A representative selection of the many space plasma instabilities and relevant aspects of nonlinear theory is given in a companion textbook, Advanced Space Plasma Physics, by the same authors.
Bioelectricity, 3E will enhance on the developments since the successful last edition. This new edition of the classic introductory text to bioelectricity (electrophysiology) aims at biomedical engineering students and is authored by two eminent biomedical engineering professors at Duke University. Its 12 chapters cover topics in bioelectricity: electrical properties of the cell membrane; action potentials; cable theory; neuromuscular junction; extracellular fields; cardiac electrophysiology. The authors discuss many topics that are central to biophysics and bioengineering and the quantitative methods employed. In addition, this classic text will be complemented by a Bioelectricity Solutions Manual, sure to aid the speed and assimilation of the Teaching Text material to the new biomedical engineering student.
This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.
This volume contains the collected works of the eminent chemist and physicist Lars Onsager, one of the most influential scientists of the 20th Century. The volume includes Onsager's previously unpublished PhD thesis, a biography by H C Longuet-Higgins and M E Fisher, an autobiographical commentary, selected photographs, and a list of Onsager discussion remarks in print. Onsager's scientific achievements were characterized by deep insights into the natural sciences. His two best-known accomplishments are his reciprocal relations for irreversible processes, for which he received the 1968 Nobel Prize in Chemistry, and his explicit solution of the two-dimensional Ising model, a mathematical tour de force that created a sensation when it appeared. In addition, he made significant theoretical contributions to other fields, including electrolytes, colloids, superconductivity, turbulence, ice, electrons in metals, and dielectrics. In this volume, Onsager's contributions are divided into the following fields: irreversible processes; the Ising model; electrolytes; colloids; helium II and vortex quantization; off-diagonal long-range order and flux quantization; electrons in metal; turbulence; ion recombination; fluctuation theory; dielectrics; ice and water; biology; Mathieu functions. The different fields are evaluated by leading experts. The commentators are P W Anderson, R Askey, A Chorin, C Domb, R J Donnelly, W Ebeling, J-C Justice, H N W Lekkerkerker, P Mazur, H P McKean, J F Nagle, T Odijk, A B Pippard, G Stell, G H Weiss, and C N Yang.
This book discusses the various principles in confocal scanning microscopy which has become a useful tool in many practical fields including biological studies and industrial inspection. The methodology presented in this book is unique and is based on the concept of the three-dimensional transfer functions which have been developed by the author and his colleagues over the last five years. With the 3-D transfer functions, resolving power in 3-D confocal imaging can be defined in a unified way, different optical arrangements can be compared with an insight into their inter-relationship, and images of thick objects can be modeled in terms of the Fourier transform which makes the analysis easy. The aim of this book is to provide a systematic introduction to the concept of the 3-D transfer functions in various confocal microscopes, to describe the methods for the derivation of different 3-D transfer functions, and to explain the principles of 3-D confocal imaging in terms of these functions.
This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.
The International Symposium on Biological Effects of Magnetic and Electrom- netic Fields was held from September 3-4, 1993 at Kyushu University in Fukuoka . Japan . Originally, it was only intended to be an informal gathering of many scientists who had accepted my invitation to visit Kyushu University after the XXIVth General Assembly of the International Union of Radio Science (URSI), held in Kyoto prior to our symposium . However, since so many distinguished scientists were able to come, it was decided that a more formal symposium would be possible . It was a very productive symposium and, as a result, many of the guests consented that it would be a good idea to gather all the information put forth at the meeting and have it published. In addition, although they were unfortunately unable to attend the symposium . many other distinguished scientists had also expressed their wish to contribute to this effort and, in so doing. help to increase understanding in this, as yet, relatively immature field of science . The question of both positive and negative effects of magnetic and electromagnetic fields on biological systems has become more and more important in our world today as they .
This book describes the subject of electrodynamics at classical as well as quantum level, developed as an interaction at a distance. Thus it has electric charges interacting with one another directly and not through the medium of a field. In general such an interaction travels forward and backward in time symmetrically, thus apparently violating the principle of causality. It turns out, however, that in such a description the cosmological boundary conditions become very important. The theory therefore works only in a cosmology with the right boundary conditions; but when it does work it is free from the divergences that plague a quantum field theory.
This book describes the subject of electrodynamics at classical as well as quantum level, developed as an interaction at a distance. Thus it has electric charges interacting with one another directly and not through the medium of a field. In general such an interaction travels forward and backward in time symmetrically, thus apparently violating the principle of causality. It turns out, however, that in such a description the cosmological boundary conditions become very important. The theory therefore works only in a cosmology with the right boundary conditions; but when it does work it is free from the divergences that plague a quantum field theory.
This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.
The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop's contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long learning process"'. In this sense, this book will be a reference point for all future efforts to improve instrument calibration procedures in astronomy.
Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary behavior of highly interacting man-made systems, in areas such as communications and transport, which permeate the modern world. The same applies to the evolution of human networks such as social, political and financial systems, where technology has tended to vastly increase both the complexity and speed of interaction, which is sometimes effectively instantaneous. The book contains reviews on such diverse areas as evolution experiments with microorganisms, the origin and evolution of viruses, evolutionary dynamics of genes and environment in cancer development, aging as an evolution-facilitating program, evolution of vision and evolution of financial markets.
Praise for the Series:
Metaphors, generalizations and unifications are natural and desirable ingredients of the evolution of scientific theories and concepts. Physics, in particular, obviously walks along these paths since its very beginning. This book focuses on nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs (BG) statistical mechanics, one of the greatest monuments of contemporary physics. Conceived more than 130 years ago by Maxwell, Boltzmann and Gibbs, the BG theory exhibits uncountable - some of them impressive - successes in physics, chemistry, mathematics, and computational sciences, to name a few. Presently, more than two thousand publications, by over 1800 scientists around the world, have been dedicated to the nonextensive generalization. Remarkable applications have emerged, and its mathematical grounding is by now relatively well established. A pedagogical introduction to its concepts - nonlinear dynamics, extensivity of the nonadditive entropy, global correlations, generalization of the standard CLT's, among others - is presented in this book as well as a selection of paradigmatic applications in various sciences together with diversified experimental verifications of some of its predictions.
In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsars, and map in exquisite detail the radiation surrounding them for several hundreds of nebulae. By carefully reviewing the state of the art in pulsar nebula research this book prepares scientists and PhD students for future work and progress in the field.
In this book, leading scientists in the fields of sensory biology, neuroscience, physics and engineering explore the basic operational principles and behavioral uses of flow sensing in animals and how they might be applied to engineering applications such as autonomous control of underwater or aerial vehicles. Although humans possess no flow-sensing abilities, countless aquatic (e.g. fish, cephalopods and seals), terrestrial (e.g. crickets and spiders) and aerial (e.g. bats) animals have flow sensing abilities that underlie remarkable behavioral feats.These include the ability to follow silent hydrodynamic trails long after the trailblazer has left the scene, to form hydrodynamic images of their environment in total darkness, and to swim or fly efficiently and effortlessly in the face of destabilizing currents and winds. "
Dynamic Biological Organization is a fascinating account of the living organisms as dynamic systems, based on the concept that the spatio-temporal coherence of events within a living system result from the intrinsic dynamics of the processes taking place within that sysem. The authors of this important work, Miguel Aon and Sonia Cortassa have travelled widely to work in some of the leading research laboratories to accumulate a large information base on which to assemble this book. Taking a transdisciplinary approach, the authors draw on work at the interface of biochemistry, genetics, physiology, thermodynamics, kinetics and biomathematics, using mathematical models throughout to corroborate and analyze the biological complexity presented. Emphasizing biological processes occuring at the cellular level. Dynamic Biological Organization gives exciting insights into the experimental and theoretical applications of modern scientific paradigms to fundamental biological processes. |
You may like...
Empowerment Through Language and…
Albert Weideman, Birgit Smieja
Paperback
R1,514
Discovery Miles 15 140
MRI of the Newborn, Part 2, An Issue of…
Thierry A.G.M. Huisman, Claudia M. Hillenbrand
Hardcover
R1,991
Discovery Miles 19 910
Cardiovascular Magnetic Resonance in…
Raymond J. Kim, Dudley J. Pennell
Hardcover
R1,678
Discovery Miles 16 780
|