![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
This fourth edition is primarily aimed at helping physicists, physical chemists, materials scientists, metallurgists, engineers, and biologists to carry out investigations at low temperatures. This new edition takes into account the major changes in cryogenic technology over the past twenty years. These changes include areas of temperature measurement and control, superconducting magnets, cryocoolers, ultra-low temperatures, technical data on materials, commercially available cryostats for optical, x-ray, thermal and electrical measurements. Less emphasis is now placed on methods of constructing cryostats in the laboratory and more emphasis on commercially available cryostats, temperature controllers, and closed circuit cryocoolers. The book contains comprehensive, up-to-date tables of physical property data on metals, polymers, and ceramics. It will be of value to graduate students as well as to engineers and biologists facing cryogenic problems.
In recent years a number of non-linear Raman spectroscopic techniques have been substantially developed and are now proving to be powerful methods for the solution of many problems not only in spectroscopy but also in chemistry, physics and biology. These techniques include hyper Rayleigh and hyper Raman spectroscopy, coherent anti-Stokes Raman Spectroscopy (CARS), Raman Gain and In verse Raman Spectroscopy, Photoacoustic Raman Spectroscopy (PARS) and the Raman Induced Kerr Effect (RIKE). Hyper Raman spectro scopy although experimentally difficult is valuable for investi gating transitions which are not active in the infrared or in the linear Raman effect; and the other non-linear Raman effects can provide signal strength and resolution which are orders of magni tude higher than those obtainable with linear Raman spectroscopy. The thirty chapters in this book will form the basis of lectures presented at the NATO Advanced Study Institute in Bad Windsheim, F. R. Germany from August 23 - September 3, 1982."
This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale.
Numerical Methods for Atmospheric and Oceanic Sciences caters to the needs of students of atmospheric and oceanic sciences in senior undergraduate and graduate courses as well as students of applied mathematics, mechanical and aerospace engineering. The book covers fundamental theoretical aspects of the various numerical methods that will help both students and teachers in gaining a better understanding of the effectiveness and rigour of these methods. Extensive applications of the finite difference methods used in the processes involving advection, barotropic, shallow water, baroclinic, oscillation and decay are covered in detail. Special emphasis is given to advanced numerical methods such as Semi-Lagrangian, Spectral, Finite Element and Finite Volume methods. Each chapter includes various exercises including Python codes that will enable students to develop the codes and compare the numerical solutions obtained through different numerical methods.
TECTONlCS AND PHYSICS Geology, although rooted in the laws of physics, rarely has been taught in a manner designed to stress the relations between the laws and theorems of physics and the postulates of geology. The same is true of geophysics, whose specialties (seismology, gravimetIy, magnetics, magnetotellurics) deal only with the laws that govern them, and not with those that govern geology's postulates. The branch of geology and geophysics called tectonophysics is not a formalized discipline or subdiscipline, and, therefore, has no formal laws or theorems of its own. Although many recent books claim to be textbooks in tectonophysics, they are not; they are books designed to explain one hypothesis, just as the present book is designed to explain one hypothesis. The textbook that comes closest to being a textbook of tectonophysics is Peter 1. Wyllie's (1971) book, The Dynamic Earth. Teachers, students, and practitioners of geology since the very beginning of earth science teaching have avoided the development of a rigorous (but not rigid) scientific approach to tectonics, largely because we earth scientists have not fully understood the origin of the features with which we are dealing. This fact is not at all surprising when one considers that the database for hypotheses and theories of tectonics, particularly before 1960, has been limited to a small part of the exposed land area on the Earth's surface."
Volume 16 marks the beginning of a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. This volume is being followed by Volume 17 with the subtitle Structure Computation and Dynamics in Protein NMR. Volumes 16 and 17 present some of the recent, significant advances in biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volumes some of the world's foremost experts who have provided broad leadership in advancing this field. Volume 16 contains advances in two broad categories: the first, Large Proteins, Complexes, and Membrane Proteins, and second, Pulse Methods. Volume 17, which will follow covers major advances in Computational Methods, and Structure and Dynamics. In the opening chapter of Volume 16, Marius Clore and Angela Gronenborn give a brief review of NMR strategies including the use of long range restraints in the structure determination of large proteins and protein complexes. In the next two chapters, Lewis Kay and Ron Venters and their collaborators describe state-of-t- art advances in the study of perdeuterated large proteins. They are followed by Stanley Opella and co-workers who present recent developments in the study of membrane proteins. (A related topic dealing with magnetic field induced residual dipolar couplings in proteins will appear in the section on Structure and Dynamics in Volume 17).
Right now, you are orbiting a black hole. The Earth orbits the Sun, and the Sun orbits the centre of the Milky Way: a supermassive black hole, the strangest and most misunderstood phenomenon in the galaxy. In A Brief History of Black Holes, the award-winning University of Oxford researcher Dr Becky Smethurst charts five hundred years of scientific breakthroughs in astronomy and astrophysics. She takes us from the earliest observations of the universe and the collapse of massive stars, to the iconic first photographs of a black hole and her own published findings. A cosmic tale of discovery, Becky explains why black holes aren't really 'black', that you never ever want to be 'spaghettified', how black holes are more like sofa cushions than hoovers and why, beyond the event horizon, the future is a direction in space rather than in time. Told with humour and wisdom, this captivating book describes the secrets behind the most profound questions about our universe, all hidden inside black holes. 'A jaunt through space history . . . with charming wit and many pop-culture references' - BBC Sky At Night Magazine
Strangeness nuclear physics bears a broad impact on contemporary physics. This set of extensive lectures presents a balanced theoretical and experimental introduction to, and survey of, the field. It addresses topics such as the production and spectroscopy of strange nuclear systems, modern approaches to the hyperon-nucleon interaction, and weak decays of hypernuclei. This burgeoning research field is well served by this tutorial primer.
This thesis presents studies of the starless core populations of three nearby molecular clouds made as part of the James Clerk Maxwell Telescope Gould Belt Survey. These studies combine observations made using the SCUBA-2 submillimetre camera with data from several other instruments, including the Herschel Space Observatory, to identify and characterise starless cores in the Ophiuchus, Taurus and Cepheus molecular clouds. The temperatures, masses and stability against collapse of the starless cores are measured, the latter through detailed virial analysis, including a determination of the external pressure on the cores. The book illustrates core stability on the "virial plane", in which core stability is plotted against core confinement mode, showing that starless cores are typically confined by external pressure rather than self-gravity. It also presents an analytical model of the evolution of starless cores in the "virial plane", demonstrating that a pressure-confined starless core may evolve due to virial stability rather than gravitational collapse, which means that a core can only be definitively considered to be prestellar if it is gravitationally bound.
This book sheds valuable new light on the genetic mineralogy of lower-mantle diamonds and syngenetic minerals. It presents groundbreaking experimental results revealing the melting relations of ultrabasic and basic associations and a physicochemical peritectic mechanism of their evolution. The experimental investigations included here reveal the key multicomponent, multiphase oxide-silicate-carbonate-carbon parental media for lower-mantle diamonds and syngenetic minerals. Consequently, readers will find extensive information on the diamond-parental oxide-silicate-carbonate-carbon melts-solutions that supplement the general features of lower-mantle diamond genesis and the most efficient ultrabasic-basic evolution. The experimental results on physicochemical aspects, combined with analytical mineralogy data, make it possible to create a generalized composition diagram of the diamond-parental melts-solutions, there by completing the mantle-carbonatite concept for the genesis of lower-mantle diamonds and syngenetic minerals. This book addresses the needs of all researchers studying the Earth's deepest structure, super-deep mineral formation including diamonds, and magmatic evolution.
This collection provides researchers and scientists with advanced analyses and materials design techniques in Biomaterials and presents mechanical studies of biological structures. In 16 contributions well known experts present their research on Stress and Strain Analysis, Material Properties, Fluid and Gas mechanics and they show related problems.
Turbulence and magnetic fields are ubiquitous in the Universe. Their importance to astronomy cannot be overestimated. The theoretical advancements in magnetohydrodynamic (MHD) turbulence achieved during the past two decades have significantly influenced many fields of astronomy. This book provides predictive theories of the magnetic field generation by turbulence and the dissipation of MHD turbulence. These fundamental non-linear problems were believed to be tractable only numerically. This book provides complete analytical descriptions in quantitative agreement with existing numerics, as well as theoretical predictions in physical regimes still unreachable by simulations, and explanations of various related observations. It also discusses and promotes the astrophysical applications of MHD turbulence theories, including (i) the particle acceleration and radiation in high-energy phenomena, e.g., Gamma-Ray Bursts, supernova remnants, cosmic rays; (ii) interstellar density fluctuations and the effect on observations, e.g., Faraday rotation, scattering measurements of Galactic and extragalactic radio sources; (iii) density and magnetic field structure in molecular clouds toward star formation. In closing, this book demonstrates the key role of MHD turbulence in connecting diverse astrophysical processes and unraveling long-standing astrophysical problems, as foreseen by Chandrasekhar, a founder of modern astrophysics.
This book gives an overview of recent advances in the fracture mechanics of polymers (experimental and alternative methods), morphology property correlations (homopolymers, copolymers, blends), hybrid methods for polymer testing and polymer diagnostics, and biocompatible materials and medical prostheses, as well as application examples and limits. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, each chapter of this book gives a review of the particular aspects. This book will be of great value to scientists, engineers and graduates in polymer materials science.
This book deals with an effect in celestial mechanics that has become quite important in exoplanet research. The Lidov-Kozai effect reveals itself in coherent periodic variations (which can be very large) of the inclination and eccentricity of an orbiting body in the presence of an inclined perturber. The effect is known to be important in the motion of many asteroids and planetary satellites. What is more, now it attracts more and more interest in the astronomical and astrophysical community due to its relevance for many exoplanetary systems. Recent years witnessed major advancements in its theory. It would be no exaggeration to say that nowadays the Lidov-Kozai effect becomes one of the most studied astrophysical effects. This book covers the multitude of the Lidov-Kozai effect's modern applications and its theory developments. It will be useful for researchers and students working in astrophysics, celestial mechanics, stellar dynamics, theoretical mechanics, space missions design, depending on the interests of the reader. The book is self-contained. It provides the full detailed coverage of the effect's theory and applications.
Proceedings of a Symposium organized by the Summer Advanced Study Institute, held at Queen's University, Kingston, Ontario, August 3-14, 1970
1.1. MISSION BACKGROUND The scientific objective of this magnetospheric physics mission was a detailed in vestigation of the Aurora Borealis, or 'Northern Lights'. The fields experiments (electric and magnetic) were constructed by the University of California at Berke ley (UCB), and Los Angeles (UCLA) respectively. The particles instruments were constructed by UCB and the University of New Hampshire in collaboration with Lockheed Palo Alto Research Laboratory. The instrument data processing unit was provided by UCB. The spacecraft bus, telemetry, and launch services were provided by the NASA Goddard Space Flight Center SMEX office. The science principal investigator is Dr C. W. Carlson of UCB, and the program is managed by the SMEX office. The UCB design philosophy emphasizes the demonstration of design margins set by peer review. As a result, each boom system was extensively tested at a prototype level before the flight units were manufactured. Additionally, the design, assembly and testing of each boom mechanism was conducted by a single engineer solely responsible for its success.
This book examines the intersection of Organizational Behavior Management (OBM) and Industrial and Organizational Psychology (I/O Psychology). It argues that, whilst OBM and I/O Psychology have developed simultaneously, they have done so with minimal integration. I/O Psychology, a somewhat older field, has evolved to become widely accepted, both influencing management and social sciences and being affected by them. It can be viewed as a research-oriented subject that is closely aligned with human resources functions. With regards to the intersection of I/O Psychology with OBM, some practices are more closely related than others; and of those that are related, some are relatively consistent with OBM practices, while others are very inconsistent. Most I/O Psychology interventions focus on many people simultaneously, seeking to ensure that one intervention affects multiple employees as a cost-efficient way to improve organizations, while OBM is usually better than I/O Psychology at improving the behaviors of individuals and smaller groups or workers. This book provides a framework for understanding differences and similarities between I/O Psychology and OBM, and as such is an innovative compendium for students, scholars, applied psychologists, and human resource specialists. It was originally published as a special issue of the Journal of Organizational Behavior Management.
Stellar astrophysics still provides the basic framework for deciphering the imprints left over by the evolving universe on all scales. Advances or shortcomings in the former field have direct consequences in our ability to understand the global properties of the latter. This volume contains the most recent updates on a variety of topics that, though independent by themselves, are inevitably connected on a cosmological scale. These include comprehensive articles by leaders in fields extending from stellar atmospheres through properties of the stellar component in the Milky Way up to the stellar environment in high redshift galaxies. The wide coverage of astrophysical themes makes this volume very valuable for researchers and Ph.D. students in astrophysics.
The study of surfaces has experienced dramatic growth over the past decade. Now, the editors of the internationally celebrated series Advances in Chemical Physics have brought together in this self-contained, special topic volume contributions from leading researchers in the field treating some of the most crucial aspects of the experimental and theoretical study of surfaces. This work delves into such core issues as:
This valuable resource provides important insights into the current state of knowledge about surface properties. Prigogine and Rice's latest work will stimulate the imagination and motivate the exploration of other aspects of this fascinating subject.
The millimetre and submillimetre spectral region (300 to 3000 Ilm or 1000 to 100 GHz) was until recently one of the few spectral regimes not fully opened up for astronomical studies. Thanks both to improvements in detectors and receivers and to the construction of large telescopes at high altitude sites this situation is improving very rapidly. Three major telescopes have been built recently and are coming into operation during 1987 and 1988, namely the 15m James Clerk Maxwell Telescope (JCMT) and the lOAm Caltech Submillimetre Observatory (CSO) telescope, both located on Mauna Kea, Hawaii, and the 15 m Swedish -ESO telescope (SEST) in Chile. Because a very wide range of astronomical problems can be tackled with these major new facilities there is a great deal of interest from the many potential new users anxious to become familiar with this rapidly developing field. During 1986 it became clear to British and Dutch astronomers involved in planning the commissioning and operation of the JCMT, that a summer school in this field would greatly benefit the potential and actual JCMT user community. With financial support from the SERC and supplemented by a grant from the ZWO, the Summer School on 'Millimetre and Submillimetre Astronomy' was held at Stirling University from June 21 to 27, 1987.
This thesis presents the results of indirect dark matter searches in the gamma-ray sky of the near Universe, as seen by the MAGIC Telescopes. The author has proposed and led the 160 hours long observations of the dwarf spheroidal galaxy Segue 1, which is the deepest survey of any such object by any Cherenkov telescope so far. Furthermore, she developed and completely characterized a new method, dubbed "Full Likelihood", that optimizes the sensitivity of Cherenkov instruments for detection of gamma-ray signals of dark matter origin. Compared to the standard analysis techniques, this novel approach introduces a sensitivity improvement of a factor of two (i.e. it requires 4 times less observation time to achieve the same result). In addition, it allows a straightforward merger of results from different targets and/or detectors. By selecting the optimal observational target and combining its very deep exposure with the Full Likelihood analysis of the acquired data, the author has improved the existing MAGIC bounds to the dark matter properties by more than one order of magnitude. Furthermore, for particles more massive than a few hundred GeV, those are the strongest constraints from dwarf galaxies achieved by any gamma-ray instrument, both ground-based or space-borne alike.
Written by leading exponents in the field, this collection of timely reviews presents observational methods and the latest results of astronomical research as well as their theoretical foundations and interrelations, providing information and scientifically rigorous coverage.
This book presents review papers and research articles focusing on the 2008 Wenchuan earthquake in Sichuan, China, discussing cross-disciplinary and multiple thematic aspects of modern seismological, geophysical, geological and stochastic methodology and technology. Resulting from international and regional earthquake research and disaster mitigation collaborations, and written by international authors from multiple institutions and disciplines, it describes methods and techniques in earthquake science based on investigations of the Wenchuan earthquake. It also includes extensive reference lists to aid further research. The book helps both senior researchers and graduate students in earthquake science to broaden their horizons in data analysis, numerical modeling and structural retrieval for the tectonic, geological, geophysical and mechanical interpretation of the 2008 M8 Wenchuan earthquake to support a global and regional cooperation for preparedness, and the mitigation and management of seismic risk.
In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include: quantum structures of semiconductors, spintronics, photonic crystals, surface plasmons in metallic nanostructures, photonic metamaterials, liquid crystal materials, organic LED materials and magnet-optics. |
You may like...
Intelligent Edge Computing for Cyber…
D. Jude Hemanth, Bb Gupta, …
Paperback
R2,954
Discovery Miles 29 540
Mechanisms and Therapy of Liver Cancer…
Paul B. Fisher, Devanand Sarkar
Hardcover
R3,734
Discovery Miles 37 340
|