![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics
Early in 1990 a scientific committee was formed for the purpose of organizing a high-level scientific meeting on Future Directions of Nonlinear Dynamics in Physical and Biological Systems, in honor of Alwyn Scott's 60th birthday (December 25, 1991). As preparations for the meeting proceeded, they were met with an unusually broad-scale and high level of enthusiasm on the part of the international nonlinear science community, resulting in a participation by 168 scientists from 23 different countries in the conference, which was held July 23 to August 11992 at the Laboratory of Applied Mathematical Physics and the Center for Modelling, Nonlinear Dynamics and Irreversible Thermodynamics (MIDIT) of the Technical University of Denmark. During the meeting about 50 lectures and 100 posters were presented in 9 working days. The contributions to this present volume have been grouped into the following chapters: 1. Integrability, Solitons, and Coherent Structures 2. Nonlinear Evolution Equations and Diffusive Systems 3. Chaotic and Stochastic Dynamics 4. Classical and Quantum Lattices and Fields 5. Superconductivity and Superconducting Devices 6. Nonlinear Optics 7. Davydov Solitons and Biomolecular Dynamics 8. Biological Systems and Neurophysics. AI Scott has made early and fundamental contributions to many of these different areas of nonlinear science. They form an important subset of the total number of the papers and posters presented at the meeting. Other papers from the meeting are being published in a special issue of Physica D Nonlinear Phenomena.
Key features: Supported by the latest research and based on the state-of-the-art computational methods in high-accuracy computational spectroscopy of molecules Authored by an authority in the field Accessible to both experts and non-experts working in the area of computational and experimental spectroscopy, in addition to graduate students
This volume represents a collection of authoritative reviews by internationally recognized experts in the field of middle infrared (mid-IR) coherent sources and their applications. The compilation describes the fundamental principles and state-of-the-art of practical solid-state sources in the mid-IR regions of the spectrum covering the 2-50 m range. Coherent mid-IR sources also offer important technologies for atmospheric chemistry, free-space communication, imaging, rapid detection of explosives, chemical and biological agents, narcotics, as well as for applications in air- and sea-born security. In comparison to the previous volume on this subject in 2003, which focused mainly on the design and development of mid-IR sources, the emphasis in the present volume is shifted towards applications. The instructive nature of the book makes it an excellent text for practicing engineers, physicists and graduate students.
Minor bodies in the Solar System, though representing only a small fraction of the mass in the Solar System, may well play a fundamental role in terrestrial evolution. This book contains investigations of the dynamics and physics of comets, asteroids and meteor streams, and the rather controversial topic of periodic phenomena in the Solar System as signified by geological records, together with several associated developments in celestial dynamics. All these problems are interwoven. This book makes a contribution towards unravelling the nature of the interactions between the Earth and its celestial environment.
In 2002 the multidisciplinary research project "Nasca: development and adaptation of archaeometric techniques for the investigation of cultural history" (Nasca: Entwicklung und Adaption archa..ometrischer Techniken zur Erforschung der Kulturgeschichte) started, funded by the German Federal Ministry of Education andResearch(Bundesministerium fu..r Bildung und Forschung, BMBF ) in its priority program "New scientific methods and technologies for the humanities" (Neue Naturwissenschaftliche Methoden und Technologien fu..r die Geisteswissenschaften, NTG). This new project continued and in a certain way fulfilled a lasting goal of the ministry to integrate different branches of scientific activities and to foster the transfer of expertise gained in natural sciences to the humanities and vice versa. Archaeometry, by definition the application of scientific methods in archaeological investigation, has been a major focus of the priority program since its beginnings in 1989. After funding numerous fruitful research projects that developed new archaeometric techniques mostly in bilateral cooperation, an even greater outcome was expected from a more multifaceted approach with the participation of various scientific disciplines around a well-defined, archaeological research topic. Furthermore, it was intended to establish a project outside the traditional research areas in central Europe or the Mediterranean. It was the great merit of the person formerly in charge of the BMBF priority program, Dr. Edgar Pusch, to develop these far-reaching perspectives and we are extremely grateful that after a rigorous screening our project among other interesting ones was selected for funding.
This book provides an interdisciplinary presentation of the current knowledge of pattern formation in complex system, with sufficiently many details, tools, and concrete examples to be useful for the graduate student or scientist entering this area of research.
The Matching Method for Asymptotic Solutions in Chemical Physics
Problems by A. M. Il'in, L. A. Kalyakin, and S. I. Maslennikov
Timely, authoritative, and invaluable to researchers in all areas of chemical physics, Singular Perturbation Problems in Chemical Physics is an essential resource.
Gas hydrates are ice-like crystalline substances that form a rigid cage of water molecules and entrap hydrocarbon and non-hydrocarbon gas by hydrogen bonding. Natural gas hydrate is primarily composed of water and methane. These are solid, crystalline, ice-like substances found in permafrost areas and deepwater basins around the world. They naturally occur in the pore space of marine sediments, where appropriate high pressure and low temperature conditions exist in an adequate supply of gas (mainly methane). Gas hydrates are considered as a potential non conventional energy resource. Methane hydrates are also recognized as, an influence on offshore platform stability, a major factor in climate change contributing to global warming and a significant contribution to the ocean carbon cycle. The proposed book treats various geophysical techniques in order to quantify the gas hydrate reserves and their impact on environment. The primary goal of this book is to provide the state of art for gas hydrate exploration. The target audiences for this book are non-specialist from different branches of science, graduate students and researchers.
This book provides an overview of the underlying physics and technology of modern waveguide optoelectronics. By presenting these two aspects together in a coherent manner, readers will gain an appreciation of the fundamental physical limits to device performance as well as a critical understanding of the state of the art. Starting from the fundamental optical properties of matter, the book moves on to describe methods of device design, with an emphasis on low dimensional systems. The potential of III-IV semiconductors is highlighted because of their ability to incorporate lasers, waveguides, modulators and detectors. However, other technologies - principally lithium niobate and fibre devices - are studied and contrasted. The role of nonlinear optics and femtosecond pulses within the framework of waveguide optics is evaluated. Optical fibre devices show considerable promise in a range of systems applications and such devices are discussed and compared with planar devices. Finally, progress towards photonic and optoelectronic integrated circuits is addressed.
This thesis by Cole Johnston brings novel insights into the inner workings of young massive stars. By bridging the observational fields of binary stars and asteroseismology this thesis uses state of the art statistical techniques to scrutinise theories of modern stellar astrophysics. Developing upon the commonly used isochrone fitting methodology, the author introduces the idea of isochrone cloud fitting in order to account for the full breadth of physics observed in stars. The author combines this methodology with gravity mode asteroseismic analysis to asses the level of chemical mixing deep within the stellar core in order to determine the star's age and core mass. Wrapped into a robust statistical framework to account for correlations, this methodology is employed to analyse individual stars, multiple systems, and clusters alike to demonstrate that chemical mixing has dramatic impact on stellar structure and evolution.
If standard gravitational theory is correct, then most of the matter in the universe is in an unidentified form which does not emit enough light to have been detected by current instrumentation. This proceedings was devoted to a discussion of the so-called "missing matter" problem in the universe. The goal of the School was to make current research work on unseen matter accessible to students of faculties without prior experience in this area. Due to the pedagogical nature of the School and the strong interactions between students and the lectures, the written lectures included in this volume often contain techniques and explanations not found in more formal journal publications.
Comets are always very impressive phenomena. Their appearances at regular, but mostly irregular, times excite people who see them. Astronomers have the obvious advantage of being able to see more of comets, and to study them. Their enthusiasm is reflected in the 50 papers in this book, written by more than 90 experts. The reviews in this book clearly describe a landmark in the history of cometary studies. Knowledge gathered up to and including Comet Halley are presented in two volumes. The first volume is about general aspects of observing and studying comets, where they originate and how their evolution develops. The second volume goes into the details of what a comet is: the nucleus, the coma, cometary dust, plasmas and magnetic fields. The book ends with a reflection by Fred Whipple about Comets in the Post-Halley Era. The book discusses all aspects of comets and is therefore suitable for use in graduate level courses. All astronomers and geophysicists interested in comets will find very useful and well-presented information in this book.
"Stellar Physics" is a an outstanding book in the growing body
of literature on star formation and evolution. Not only does the
author, a leading expert in the field, very thoroughly present the
current state of knowledge on stellar physics, but he handles with
equal care the many problems that this field of research still
faces. A bibliography with well over 1000 entries makes this book
an unparalleled reference source. This second edition is carefully updated in the areas of pre-supernova models, magnetorotational supernovae, and the theory of accretion disks around black holes. Additional sections have been added on strange quark stars, jet formation and collimation, radiation-driven winds in strong gravitational fields and gamma-ray bursts.
In recent years a number of non-linear Raman spectroscopic techniques have been substantially developed and are now proving to be powerful methods for the solution of many problems not only in spectroscopy but also in chemistry, physics and biology. These techniques include hyper Rayleigh and hyper Raman spectroscopy, coherent anti-Stokes Raman Spectroscopy (CARS), Raman Gain and In verse Raman Spectroscopy, Photoacoustic Raman Spectroscopy (PARS) and the Raman Induced Kerr Effect (RIKE). Hyper Raman spectro scopy although experimentally difficult is valuable for investi gating transitions which are not active in the infrared or in the linear Raman effect; and the other non-linear Raman effects can provide signal strength and resolution which are orders of magni tude higher than those obtainable with linear Raman spectroscopy. The thirty chapters in this book will form the basis of lectures presented at the NATO Advanced Study Institute in Bad Windsheim, F. R. Germany from August 23 - September 3, 1982."
This book examines the intersection of Organizational Behavior Management (OBM) and Industrial and Organizational Psychology (I/O Psychology). It argues that, whilst OBM and I/O Psychology have developed simultaneously, they have done so with minimal integration. I/O Psychology, a somewhat older field, has evolved to become widely accepted, both influencing management and social sciences and being affected by them. It can be viewed as a research-oriented subject that is closely aligned with human resources functions. With regards to the intersection of I/O Psychology with OBM, some practices are more closely related than others; and of those that are related, some are relatively consistent with OBM practices, while others are very inconsistent. Most I/O Psychology interventions focus on many people simultaneously, seeking to ensure that one intervention affects multiple employees as a cost-efficient way to improve organizations, while OBM is usually better than I/O Psychology at improving the behaviors of individuals and smaller groups or workers. This book provides a framework for understanding differences and similarities between I/O Psychology and OBM, and as such is an innovative compendium for students, scholars, applied psychologists, and human resource specialists. It was originally published as a special issue of the Journal of Organizational Behavior Management.
The "Unified Mind Theory" falls into 2 parts: the physical and the spiritual Aspect of Creation. The term "Creation" assumes the existence of a Creator, which means if God exists, Creation must be perfect & complete, because God is not subject to time. However, should it be unfinished in some people's mind, then Creation cannot be perfect and complete. We confirm "God does not change His Mind," nor is He subject to any dimension of His own Creation. The physical aspect is that part in us which is strictly mechanical. It is void of life, and it is based on math. This gives us a structure of affirmations on which our present science rests. It describes our 4-dimensional world. However it does not include Life. This is described in the spiritual aspects of Creation which is based on faith and belief in the Creator. It is the description of our 5-dimensional world in perfection and completion.
This book presents review papers and research articles focusing on the 2008 Wenchuan earthquake in Sichuan, China, discussing cross-disciplinary and multiple thematic aspects of modern seismological, geophysical, geological and stochastic methodology and technology. Resulting from international and regional earthquake research and disaster mitigation collaborations, and written by international authors from multiple institutions and disciplines, it describes methods and techniques in earthquake science based on investigations of the Wenchuan earthquake. It also includes extensive reference lists to aid further research. The book helps both senior researchers and graduate students in earthquake science to broaden their horizons in data analysis, numerical modeling and structural retrieval for the tectonic, geological, geophysical and mechanical interpretation of the 2008 M8 Wenchuan earthquake to support a global and regional cooperation for preparedness, and the mitigation and management of seismic risk.
Volume 16 marks the beginning of a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. This volume is being followed by Volume 17 with the subtitle Structure Computation and Dynamics in Protein NMR. Volumes 16 and 17 present some of the recent, significant advances in biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volumes some of the world's foremost experts who have provided broad leadership in advancing this field. Volume 16 contains advances in two broad categories: the first, Large Proteins, Complexes, and Membrane Proteins, and second, Pulse Methods. Volume 17, which will follow covers major advances in Computational Methods, and Structure and Dynamics. In the opening chapter of Volume 16, Marius Clore and Angela Gronenborn give a brief review of NMR strategies including the use of long range restraints in the structure determination of large proteins and protein complexes. In the next two chapters, Lewis Kay and Ron Venters and their collaborators describe state-of-t- art advances in the study of perdeuterated large proteins. They are followed by Stanley Opella and co-workers who present recent developments in the study of membrane proteins. (A related topic dealing with magnetic field induced residual dipolar couplings in proteins will appear in the section on Structure and Dynamics in Volume 17).
TECTONlCS AND PHYSICS Geology, although rooted in the laws of physics, rarely has been taught in a manner designed to stress the relations between the laws and theorems of physics and the postulates of geology. The same is true of geophysics, whose specialties (seismology, gravimetIy, magnetics, magnetotellurics) deal only with the laws that govern them, and not with those that govern geology's postulates. The branch of geology and geophysics called tectonophysics is not a formalized discipline or subdiscipline, and, therefore, has no formal laws or theorems of its own. Although many recent books claim to be textbooks in tectonophysics, they are not; they are books designed to explain one hypothesis, just as the present book is designed to explain one hypothesis. The textbook that comes closest to being a textbook of tectonophysics is Peter 1. Wyllie's (1971) book, The Dynamic Earth. Teachers, students, and practitioners of geology since the very beginning of earth science teaching have avoided the development of a rigorous (but not rigid) scientific approach to tectonics, largely because we earth scientists have not fully understood the origin of the features with which we are dealing. This fact is not at all surprising when one considers that the database for hypotheses and theories of tectonics, particularly before 1960, has been limited to a small part of the exposed land area on the Earth's surface."
This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale.
Jupiter's ice moon Europa is widely regarded as the most likely place to find extraterrestrial life. This book tells the engaging story of Europa, the oceanic moon. It features a large number of stunning images of the ocean moon's surface, clearly displaying the spectacular crack patterns, extensive rifts and ridges, and refrozen pools of exposed water filled with rafts of displaced ice. Coverage also features firsthand accounts of Galileo's mission to Jupiter and its moons. The book tells the rough and tumble inside story of a very human enterprise in science that lead to the discovery of a fantastic new world that might well harbor life.
This thesis presents the results of indirect dark matter searches in the gamma-ray sky of the near Universe, as seen by the MAGIC Telescopes. The author has proposed and led the 160 hours long observations of the dwarf spheroidal galaxy Segue 1, which is the deepest survey of any such object by any Cherenkov telescope so far. Furthermore, she developed and completely characterized a new method, dubbed "Full Likelihood", that optimizes the sensitivity of Cherenkov instruments for detection of gamma-ray signals of dark matter origin. Compared to the standard analysis techniques, this novel approach introduces a sensitivity improvement of a factor of two (i.e. it requires 4 times less observation time to achieve the same result). In addition, it allows a straightforward merger of results from different targets and/or detectors. By selecting the optimal observational target and combining its very deep exposure with the Full Likelihood analysis of the acquired data, the author has improved the existing MAGIC bounds to the dark matter properties by more than one order of magnitude. Furthermore, for particles more massive than a few hundred GeV, those are the strongest constraints from dwarf galaxies achieved by any gamma-ray instrument, both ground-based or space-borne alike.
This thesis develops fundamental ideas and advanced techniques for studying the Higgs boson's interactions with the known matter and force particles. The Higgs boson appears as an excitation of the Higgs field, which permeates the vacuum. Several other phenomena in our Universe, such as dark energy, dark matter, and the abundance of matter over antimatter, remain unexplained. The Higgs field may prove to be the connection between our known world and the "dark" world, and studies of the Higgs boson's interactions are essential to reveal possible new phenomena. The unique feature of this work is simultaneous measurement of the Higgs boson's associated production (its context, to use the language of the title) and its decay (its end), while allowing for multiple parameters sensitive to new phenomena. This includes computer simulation with Monte Carlo techniques of the complicated structure of the Higgs boson interactions, the matrix-element calculation of per-event likelihoods for optimal observables, and advanced fitting methods with hundreds of intricate components that cover all possible parameters and quantum mechanical interference. This culminates in the most advanced analysis of LHC data in the multi-parameter approach to Higgs physics in its single golden four-lepton decay channel to date. Optimization of the CMS detector's silicon-based tracking system, essential for these measurements, is also described.
This book presents an overview of volcanic debris avalanche deposits, which are produced by partial volcanic edifice collapse, a catastrophic natural phenomenon. It has been 40 years since the volcanic debris avalanche associated with the 1980 eruption of Mount St. Helens, and our understanding of these events has grown considerably in the interim. Drawing on these advances, the book addresses all aspects of volcanic debris avalanches. Though previously overlooked in field-based geological and volcanological studies, these deposits are now known to be associated with most volcanoes and volcanic areas around the world. The book presents state-of-the-art ideas on the triggering and emplacement mechanisms of these events, supported by field and analogue studies, as well as new simulations tools and models used to determine their physical characteristic and hazards. |
![]() ![]() You may like...
Many-Electron Approaches in Physics…
Volker Bach, Luigi Delle Site
Hardcover
|