![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
This volume contains invited and refereed papers based upon presentations given in the IMA workshop on Computational Modeling in Biological Fluid Dynamics during January of 1999, which was part of the year-long program "Mathematics in Biology." This workshop brought together biologists, zoologists, engineers, and mathematicians working on a variety of issues in biological fluid dynamics. A unifying theme in biological fluid dynamics is the interaction of elastic boundaries with a surrounding fluid. These moving boundary problems, coupled with the equations of incompressible, viscuous fluid dynamics, pose formidable challenges to the computational scientist. In this volume, a variety of computational methods are presented, both in general terms and within the context of applications including ciliary beating, blood flow, and insect flight. Our hope is that this collection will allow others to become aware of and interested in the exciting accomplishments and challenges uncovered during this workshop.
Essentials of Medical Biochemistry, Third Edition offers a condensed, yet detailed overview of clinical biochemistry, spanning fundamentals and relevant physiologic and pathophysiologic concepts. Pivotal clinical case studies aid in understanding basic science in the context of diagnosis and treatment of human diseases, and the text illuminates key topics in molecular immunology and hemostasis. Users will find fundamental concepts aiding students and professionals in biochemistry, medicine, and other healthcare disciplines. The text is a useful refresher that will help users meet USMLE and other professional licensing examination requirements, providing thorough introductions, key points, multicolored illustrations of chemical structures and figures, fact-filled tables, and recommended reading lists. This Third Edition has been fully updated to address evolving techniques in the biological sciences, including genomics, metabolomics, transcriptomics, epigenomics, proteomics, and gene therapy, among other methods. In addition, each chapter has been fully revised for current science and now features learning objectives and chapter summaries, supplemental reading, and 5 clinical case based multiple choice questions. New clinical cases have been added throughout.
This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton's principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern-Gerlach effect is revisited for atomic and free electrons.
In a rapidly evolving field such as computational physics, six years is an eternity. Even though many of the elementary techniques described here are of venerable age, their assembly into sophisticated combined methods and their intensive application to ever new problems is an ongoing and exciting process. After six years, a new the new vistas edition of this textbook must therefore take into account some of that have opened up recently. Apart from these additions and some didactic improvements, the general struc ture of the book holds good. The first three chapters are devoted to a thorough, if concise, treatment of the main ingredients from numerical mathematics: finite differences, linear algebra, and stochastics. This exercise will prove valuable when we proceed, in chapters 4 and 5, to combine these elementary tools into powerful instruments for the integration of differential equations. The final chapters are devoted to a number of applications in selected fields: statistical physics, quantum mechanics, and hydrodynamics. I will gradually augment this text by web-resident sample programs. These will be written in JAVA and will be accompanied by short explanations and references to this text. Thus it may prove worthwhile to pay an occasional visit to my web-site www.ap.univie.ac.at/users/Franz.Vesely/ to see if any new applets have sprung up."
Analytical measurements at the single molecule level under ambient conditions have become almost routine in the past few years. The application of this technology to fundamental studies of heterogeneity in biomolecular structure and dynamics, chemical and biological reaction kinetics and photophysics provides a rich playground for molecular scientists. The potential use of single molecule detection for nanotechnology and quantum information processing is a new and almost unexplored area. This handbook is intended for those interested in a practical introduction to single molecule investigations using fluorescence techniques and places special emphasis on the practicalities of achieving single molecule resolution, analyzing the resulting data and exploration of the applications in biophysics. It is ideal for graduate research students and others embarking on work in this exciting field.
The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In Connectivity and Superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.
The book offers a review of the work of the Polish Research Group on selected topics of environmental magnetism: the application of magnetic methods to study pollution of outdoor and indoor air, street dust, polluted soil, air filters and indoor dust; the use of magnetic properties to study pedogenic processes in soils and soil structure; as well as deposition processes in recent sediments. The authors focus on detailed cases and provide in-depth explanations of the causes of and relations between physical processes. The examples of different studies demonstrate how to apply magnetometry to solve problems in related disciplines, how to better understand the complexity of the magnetic structure of substances and mediums as well as how to trace interactions between the environment and natural and anthropogenic factors.
This book presents contributions to the 9th International Workshop on Bifurcation and Degradation in Geomaterials held in Porquerolles, France, May 23-26, 2011. This series of conferences, started in the early 1980s, is dedicated to the research on degradation and instability phenomena in geomaterials. The volume gathers a series of manuscripts by brilliant international scholars reflecting recent trends in theoretical and experimental research in geomechanics. It incorporates contributions on topics like instability analysis, localized and diffuse failure description, multi-scale modeling and applications to geo-environmental issues. This book will be valuable for anyone interested in the research on degradation and instabilities in geomechanics and geotechnical engineering, appealing to graduate students, researchers and engineers alike.
Most of the visible matter in the universe exists in the plasma state. Plasmas are of major importance for space physics, solar physics, and astrophysics. On Earth they are essential for magnetic controlled thermonuclear fusion. This textbook collects lecture notes from a one-semester course taught at the K.U. Leuven to advanced undergraduate students in applied mathematics and physics. A particular strength of this book is that it provides a low threshold introduction to plasmas with an emphasis on first principles and fundamental concepts and properties. The discussion of plasma models is to a large extent limited to Magnetohydrodynamics (MHD) with its merits and limitations clearly explained. MHD provides the students on their first encounter with plasmas, with a powerful plasma model that they can link to familiar classic fluid dynamics. The solar wind is studied as an example of hydrodynamics and MHD at work in solar physics and astrophysics.
Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and Attitude Determination Impact Prediction and Risk Analysis, Mission Analysis-Proximity Operations, Active Removal/Deflection Control Under Uncertainty, Active Removal/Deflection Technologies, and Asteroid Manipulation
This book consists of peer-reviewed articles and reviews presented as lectures at the Sixth International Symposium on Thermal Engineering and Sciences for Cold Regions in Darmstadt, Germany. It addresses all relevant aspects of thermal physics and engineering in cold regions, such as the Arctic regions. These environments present many unique freezing and melting phenomena and the relevant heat and mass transfer processes are of basic importance with respect to both the technological applications and the natural context in which they occur. Intended for physicists, engineers, geoscientists, climatologists and cryologists alike, these proceedings cover topics such as: ice formation and decay, heat conduction with phase change, convection with freezing and melting, thermal properties at low temperature, frost heave and permafrost, climate impact in cold regions, thermal design of structures, bio-engineering in cold regions, and many more.
The Original Energy theory postulates that the Universeis originated from cold, fold, compressed embryonic energyformation; ironically from the no weight, no charge, the tiniestelement, the photon. Through Photongenesis procedure a mutualgeneration between photon and electron, from ultra energeticto less energetic stage, photons and electrons constitute everyexistence, including life inside the universe. Under the guidanceof the Original Energy codes, photons derive, develop, govern, transform and rule the universe. It means the universe did notderive from infinitely hot, dense matter, the primeval atom, afterthe singularity and the Big Bang event. The mass dependentgravitational force is not the primordial force.Proton, neutron and electrons might occupy only 4 % of thevolume of an atom; the rest of it is electromagnetic energy. Matteronly constitutes 4% of the volume of the entire universe; therest is electromagnetic energysphere emanates from de nucleusof every heavenly body and the universe, making it isotropic, homogeneous and stable. Hence, energy is the most importantpart of the universe As material existence, heavenly bodies, life continually evolves, transforms, vanishes and would be recycled in the universe. Onlythe Original Energy would last forever.If we know the most basic element that constitutes theuniverse we would know the secret of everything. Photogenesisreveals precisely the origin of the universe, the origin of life andthe fate of the universe.
Hardly any phenomenon in the modern environment is as ubiquitous as electromagnetic fields and waves. We have learned to understand the physical characteristics of these energy forms, and we have applied them in abundant ways to embellish our ways of life and our standards of living. Furthermore, we have come to depend on them for health, safety, information, comfOli, and conveyance. Apart from their intended roles, these electromagnetic fields and waves produce other effects which may influence the activities of living organisms. The effects produced depend on many physical, chemical, and biological factors. They may be grossly apparent and visible soon after exposure of the living organism or they may not appear to have influenced the organism at all upon casual examination. Even then, there may be subtle changes which are only detectable upon careful chemical or microscopic study, or which are apparent only after a considerable time delay. Nevertheless, our understanding of the interaction of electromagnetic fields with living systems is advancing in a wide range of topical areas. This bi-annual series with invited reviews by recognized leaders in their respective specialties, will present progress to date in key areas of research and scholarship. The guiding philosophy of this undertaking is the presentation of integrated, known, and confilmed phenomenological observations, basic mechanism of interactions, and applications in biology and medicine, as well as perspectives on current topics of interest.
It is this editor's distinct pleasure to offer to the readership the text of the lectures presented at our recent NATO Advanced Study Institute held in Cortina d'Ampezzo, Italy between August 6 and August 17, 1984. The invited lectures are printed in their entirety while the seminar contributions are presented as abstracts. Our Advanced Study Institutes were originated in 1972 and the reader, familiar with periodic phenomena, so important in Celestial Mechanics, will easily establish the fact that this Institute was our fifth one in the series. We dedicated the Institute to the subject of stability which itself is a humbling experience since it encompasses all fields of sciences and it is a basic element of human culture. The many definitions in existence and their practical applications could easily fill another volume. It is known in this field that it is easy to deliver lectures or write papers on stability as long as the definition of stability is carefully avoided. On the other hand, if one selects a definition, he might be criticized for using that definition and not another one. In this volume we carefully defined the specific concept of stability used in every lecture. If the reader wishes to introduce other definitions we feel that he should be entirely free and we encourage him to do so. It is also known that certain sta bility definitions and concepts are more applicable to certain given fields than to others."
Space storms, the manifestation of bad weather in space, have a
number of physical effects in the near-Earth environment:
acceleration of charged particles in space, intensification of
electric currents in space and on the ground, impressive aurora
displays, and global magnetic disturbances on the Earth's surface.
Space weather has been defined as conditions on the Sun and in the
solar wind, magnetosphere, ionosphere, and atmosphere that can
influence the performance and reliability of space- and
ground-based technological systems and can endanger human life'.
The 19 chapters of this book, written by some of the foremost
experts on the topic, present the most recent developments in space
storm physics and related technological issues, such as malfunction
of satellites, communication and navigation systems, and electric
power distribution grids. As recommended in the United Nations Space & Atmospheric Science Education Curriculum booklet. Please find it amongst classics such as T.J.M. Boyd, J.J. Sanderson, J.K. Hargreaves and M.C. Kelly etc.
James L. Burch*C. Philippe Escoubet Originally published in the journal Space Science Reviews, Volume 145, Nos 1-2, 1-2. DOI: 10. 1007/s11214-009-9532-7 (c) Springer Science+Business Media B. V. 2009 The IMAGE and CLUSTER spacecraft have revolutionized our understanding of the inner magnetosphere and in particular the plasmasphere. Before launch, the plasmasphere was not a prime objective of the CLUSTER mission. In fact, CLUSTER might not have ever observed this region because a few years before the CLUSTER launch (at the beginning of the 1990s), it was proposed to raise the perigee of the orbit to 8 Earth radii to make multipoint measu- ments in the current disruption region in the tail. Because of ground segment constraints, this proposal did not materialize. In view of the great depth and breadth of plasmaspheric research and numerous papers published on the plasmasphere since the CLUSTER launch, this choice certainly was a judicious one. The fact that the plasmasphere was one of the prime targets in the inner magnetosphere for IMAGE provided a unique opportunity to make great strides using the new and comp- mentary measurements of the two missions. IMAGE, with sensitive EUV cameras, could for the rst time make global images of the plasmasphere and show its great variability d- ing storm-time. CLUSTER, with four-spacecraft, could analyze in situ spatial and temporal structures at the plasmapause that are particularly important in such a dynamic system.
This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers' attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.
Art interprets the visible world. Physics charts its unseen workings. The two realms seem completely opposed. But consider that both strive to reveal truths for which there are no words--with physicists using the language of mathematics and artists using visual images. In Art & Physics, Leonard Shlain tracks their breakthroughs side by side throughout history to reveal an astonishing correlation of visions. From the classical Greek sculptors to Andy Warhol and Jasper Johns, and from Aristotle to Einstein, artists have foreshadowed the discoveries of scientists, such as when Monet and Cezanne intuited the coming upheaval in physics that Einstein would initiate. In this lively and colorful narrative, Leonard Shlain explores how artistic breakthroughs could have prefigured the visionary insights of physicists on so many occasions throughout history. Provicative and original, Art & Physics is a seamless integration of the romance of art and the drama of science--and an exhilarating history of ideas.
This book contains the lectures presented at the International Workshop on Relation between Laboratory and Space Plasmas held at Gakushi-Kaikan (University Alumni Association) Kanda in Tokyo, Japan on 14 - 15 April, 1980. Its aim was to bring together laboratory, fusion and space plasma physicists and to highlight the communality of basic plasma phenomena, similarities and differences observed in the laboratory and in space, thus exchanging information tnd views on new ideas to link both areas. Although similar type of conferences were held in Europe and recently in the States, this is the first time we have had in Japan for such an international meeting, which may be regarded as an extended version of our national Workshop held twice at the Institute of Plasma Physics of Japan (IPPJ) in 1976 and in 1977 (IPPJ Research Report No. 286 and No. 365). The Workshop consisted of seven regular sessions and one special session with approximately ninety participants from allover the world. Thirty-six papers, invited and contributed, were presented, nine from U. S. A., three from U. S. S. R., two of each from Germany, France, India, one of each from Sweden, Canada, Belgium and fifteen from Japan. The topics covered were: (1) The Critical Velocity (2) Beam Plasma Discharges and Interactions (3) Double Layers and Shocks (4) Instabilities in the Equatorial and Auroral Electrojets (5) Turbulent and Anomalous Plasmas (6) Plasma Irregularities (7) Solar Plasma Phenomena (8) Active Experiments in Space Plasmas and Their Simulation in the Laboratory.
This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence "object" with some historical background on observations and instrumentation. In the next chapter, the various forms of prominences are described with a thorough attempt of classification. Their thermodynamic (and velocity) properties are then derived with emphasis on the methods (and their limits) used. This goes from the simplest optically thin case to the heavy radiative treatment of plasmas out of local thermodynamic equilibrium. The following chapters are devoted to the magnetic field measurements and indirect derivation. A new branch of diagnostic tools, the seismology, is presented along with some MHD basics. This allows to better understand the propagation of waves, the energy and force equilibria. Both small-scale and large-scale studies and their relationship are presented. The importance of the newly discovered cavities is stressed in the context of prominence destabilization. The issues of prominence formation and eruption, their connection with flares and Coronal Mass Ejections and their impact on the Earth are addressed on the basis of the latest results. Finally, an exciting new area of research is unveiled with the newly discovered evidence of similar manifestations in the Universe and their possible impact on the habitability of exoplanets. References to the basic physics (where necessary) are provided and the proposed web sites addresses will allow the reader to load exciting movies. The book is aimed at advanced students in astrophysics, post-graduates, solar physicists and more generally astrophysicists. Amateurs will enjoy the many new images which go with the text.
Econophysics is a newborn field of science bridging economics and physics. A special feature of this new science is the data analysis of high-precision market data. In economics arbitrage opportunity is strictly denied; however, by observing high-precision data we can prove the existence of arbitrage opportunity. Also, financial technology neglects the possibility of market prediction; however, in this book you can find many examples of predicted events. There are other surprising findings. This volume is the proceedings of a workshop on "application of econophysics" at which leading international researchers discussed their most recent results.
This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including quantum photonics of organic dyes and inorganic nanoparticles and monitoring of single molecule (enzymatic) reactions.
In order to keep pace with the continuing development of geophysical exploration methods, the sixth volume in this series concentrates on topical subjects that the working geophysicist may be called upon to implement or test.
This book presents emerging contemporary optical techniques of ultrafast science which have opened entirely new vistas for probing biological entities and processes. The spectrum reaches from time-resolved imaging and multiphoton microscopy to cancer therapy and studies of DNA damage. The book displays interdisciplinary research at the interface of physics and biology. Emerging topics on the horizon are also discussed, like the use of squeezed light, frequency combs and terahertz imaging as the possibility of mimicking biological systems. The book is written in a manner to make it readily accessible to researchers, postgraduate biologists, chemists, engineers, and physicists and students of optics, biomedical optics, photonics and biotechnology. |
You may like...
Protein and Peptide-based Microarrays…
Navid Rabiee, Michael R. Hamblin
Paperback
R746
Discovery Miles 7 460
Introduction to Medical Electronics…
L. Nokes, D. Jennings, …
Paperback
R1,340
Discovery Miles 13 400
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,129
Discovery Miles 51 290
|