![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics
Lissajous Figures are produced by combining two oscillations at right angles to each other. The figures, drawn by mechanical devices called Harmonographs, have scientific uses, but are also enjoyed for their own beauty. The author has been working with harmonographs since his undergraduate days, has built several of them, lectured about them and has written articles about them. This book is intended for people who enjoy physics or art or both. Certainly physics professionals, both students and faculty members, will enjoy reading about an interesting byway of physics. The book is mainly designed for the reader who has some scientific literacy, but who may not be a scientist. If your mathematics is rusty, a preliminary section on mathematics supplies the necessary background for reading the rest of the book.
Designed to provide engineers with quick access to current and practical information on the dynamics of structure and foundation, this unique work, consisting of two separately available volumes, serves as a complete reference, especially for those involved with earthquake or dynamic analysis, or the design of machine foundations in the oil, gas, and energy sector. This first volume deals with theories and formulations, covering the full range of topics involved and dynamics of structure and foundation. It specifically focuses on a unified approach in dealing with dynamic soul-structure interaction and geotechnical considerations for dynamic soil-structure interaction. The authors present new insights and theories, such as the computation of Rayleigh damping for structures with a large number of degrees of freedom, and the dynamic analysis of Hammer foundations, considering non-classical soil damping. In a clear style, this well-illustrated column addresses detailed topics, grouped in the following major themes: Elasticity and numerical methods in engineering Lumped parameter vibration Soil-structure systems under static load Structural and soil dynamics This reference and design guide is intended for academics and professionals in civil and structural engineering involved with earthquake or dynamic analysis or the design of machine foundations. In combination with Volume 2: Applications (ISBN 9780415492232), it could be used as course material for advanced university and professional education in structural dynamics, soil dynamics, analysis and design of machined foundations, and earthquake engineering.
This new volume in the Poincare Seminar Series, describing recent developments at the interface between physics and biology, is directed towards a broad audience of physicists, biologists, and mathematicians. Both the theoretical and experimental aspects are covered, and particular care is devoted to the pedagogical nature of the presentations. The first survey article, by Jean-Francois Joanny and Jacques Prost, describes the theoretical advances made in the study of "active gels," with applications to liquid crystals and cell motility. Jasper van der Gucht and Cecile Sykes then report on recent advances made with biomimetic model systems in the understanding of cytokinesis. The next article, by Jonathon Howard, presents several molecular models for motor proteins, which are compared with experimental results for kinesin. David Lacoste and Kirone Mallick then show theoretically that similar ratchet models of motor proteins naturally satisfy a fundamental time-reversal symmetry, the Gallavotti-Cohen fluctuation relation. Jean-Francois Allemand, David Bensimon and Vincent Croquette and their coauthors describe the latest advances made in the real-time single molecule study of the enzymes involved in DNA replication. Raymond E. Goldstein addresses the problem of understanding, from a physics perspective, the driving forces behind the biological evolution of multicellularity, using Volvocine algae as model organisms. Stanislas Dehaene finally addresses the major challenge of understanding the neuronal mechanism of consciousness, and speculates on the possible theoretical explanations of MRI experiments.
As the growth of the world's population requires the continued search for residential space, the urbanization of natural lands is an inevitable process, but that process does not have to be one that is accomplished without regard for environmental quality. This book presents the unique perspective of naturbanization, the urbanization of protected and highly valued natural spaces that are geographically removed from current urban centers. It discusses the search and selection of new residential spaces, economic planning and policy in such areas, environmentally sensitive construction, and public investment in infrastructure to make the areas more accessible and habitable. Specifically, the book analyzes naturbanization as it is occurring in National Parks located along the European Union borders. Recent declarations have made the parks more accessible to development and consequently they are serving as models for ways to reach workable solutions and encourage the sort of economic development that will satisfy both developers and environmentalists Riccardo Giacconi Harvard/Smithsonian Center for Astrophysics The meeting of the High Energy Astrophysics Division of the American Astronomical Society, held in Cambridge, Massachusetts on January 28- 30, 1980, marks the coming of age of X-ray astronomy. In the 18 years since the discovery of the first extrasolar X-ray source, Sco X-l, the field has experienced an extremely rapid instrumentation development culminating with the launch on November 13, 1978 of the Einstein Ob servatory (HEAO-2) which first introduced the use of high resolution imaging telescopes to the study of galactic and extragalactic X-ray sources. The Einstein Observatory instruments can detect sources as faint as 10-7 Sco X-lor about 17 magnitudes fainter. The technological developments in the field have been paralleled by a host of new discoveries: in the early 1960's the detection of 9 "X-ray stars," objects 10 times more luminous in X-rays than the Sun and among the brightest stellar objects at all wavelengths; in the late 1960's and early 1970's the discovery of the nature of such systems which were identified as collapsed stars (neutron stars and black holes) in mass exchange binary systems, and the detection of the first few extragalactic sources."
Key features: Supported by the latest research and based on the state-of-the-art computational methods in high-accuracy computational spectroscopy of molecules Authored by an authority in the field Accessible to both experts and non-experts working in the area of computational and experimental spectroscopy, in addition to graduate students
This book, a selection of the papers presented at the 2nd World Congress for Electricity and Magnetism, provides state-of-the-art information on applications of electricity and electromagnetic fields on living organisms, especially man.
SEEING THE UNSEEN. GEOPHYSICS AND LANDSCAPE ARCHAEOLOGY is a collection of papers presented at the advanced XV International Summer School in Archaeology ?Geophysics for Landscape Archaeology? (Grosseto, Italy, 10-18 July 2006). Bringing together the experience of some of the world's greatest experts in the field of archaeological prospection, the focus of this book is not so much on the analysis of single buried structures, but more on researching the entire landscape in all its multi-period complexity. The book is divided into two parts. The first part concentrates on the theoretical basis of the various methods, illustrated for the most part through case-studies and practical examples drawn from a variety of geographical and cultural contexts. The second part focuses on the work carried out in the field during the Summer School. Tutors and students took part in the intensive application of the principal techniques of geophysical prospecting (magnetometry, EM, ERT and ground-penetrating radar) to locate, retrieve, process and interpret data for a large Roman villa-complex near Grosseto. SEEING THE UNSEEN. GEOPHYSICS AND LANDSCAPE ARCHAEOLOGY provides a clear illustration of the remarkable potential of geophysical methods in the study of ancient landscapes, and will be usefull to Archaeologists, Geophysicists, Environmental scientists, and those involved in the management of cultural heritage.
This ASI brought together a diverse group of experts who span virology, biology, biophysics, chemistry, physics and engineering. Prominent lecturers representing world renowned scientists from nine (9) different countries, and students from around the world representing eighteen (18) countries, participated in the ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU). The central hypothesis underlying this ASI was that interdisciplinary research, merging principles of physics, chemistry and biology, can drive new discovery in detecting and fighting chemical and bioterrorism agents, lead to cleaner environments and improved energy sources, and help propel development in NATO partner countries. At the end of the ASI students had an appreciation of how to apply each technique to their own particular research problem and to demonstrate that multifaceted approaches and new technologies are needed to solve the biological challenges of our time. The course succeeded in training a new generation of biologists and chemists who will probe the molecular basis for life and disease.
IAU symposium 165 'Compact Stars in Binaries' was held from 15 through 19 August 1994, as part of the 22nd General Assembly of the IAU in The Hague. The symposium, supported by IAU Commissions 35,37,44 and 48, and co-sponsored by Commission 42, was attended by about 400 to 500 participants. This symposium received support from: - The International Astronomical Union; - The Royal Netherlands Academy of Sciences; - The Netherlands Ministery of Education and Science; - The Leids Kerkhoven Bosscha Fonds; - The Stichting Fysica. The field of compact stars in binaries is one of the most active areas of present-day astrophysics. An absolute highlight of the last few years was the 1993 Nobel Prize of physics, awarded to Taylor and Hulse for their discovery of the binary pulsar PSR 1913+ 16, and the measurement of the orbital decay of this system due to the emission of gravitational waves. The aim of the organizers of the symposium was to present an overview of the most significant observational discoveries of the past decade, in com bination with a review of the most important theoretical developments. We were very happy that most of the world's leading experts in observation and theory were present at the symposium to review the various aspects of the subject. The contents of their oral presentations are now published in the form of these proceedings, which we expect to become an important source of reference for the coming years."
This NATO AS was the third in the series of Advanced Study Institutes on neutron stars, which started with 'Timing Neutron Stars', held in Qe me near izmir, Turkey (April 1988), followed by 'Neutron Stars, an Interdis ciplinary Subject', held in Agia Pelagia on the island of Crete (September 1990). The first school centered on our main observational access to neu tron stars, i. e. the timing of radio pulsars and accretion powered neutron stars, and on what timing of neutron stars teaches us of their structure and environment. The second school had as its theme the interplay between diverse areas of physics which find interesting, even exotic applications in the extreme conditions of neutron stars and their magnetospheres. As the field has developed, with the number of observed neutron stars rapidly in creasing, and our knowledge of many individual neutron stars getting deeper and more detailed, an evolutionary picture of neutron stars has started to emerge. This led us to choose 'The Lives of the Neutron Stars' as the uni fying theme of this third Advanced Study Institute on neutron stars. Different types of neutron star activity have been proposed to follow one another in stages during the lives of neutron stars in the same basic population; the evolutionary connection between low-mass X-ray binaries and millisecond radio pulsars is perhaps the prime example."
Whatdoasupernovaexplosioninouterspace, ?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics
The NATO ASI held in the Geophysical Institute, University of Alaska Fairbanks, June 17-28, 1991 was, we believe, the first attempt to bring together geoscientists from all the disciplines related to the solar system where fluid flow is a fundamental phenomenon. The various aspects of flow discussed at the meeting ranged from the flow of ice in glaciers, through motion of the solar wind, to the effects of flow in the Earth's mantle as seen in surface phenomena. A major connecting theme is the role played by convection. For a previous attempt to review the various ways in which convection plays an important role in natural phenomena one must go back to an early comprehensive study by 1. Wasiutynski in "Astro physica Norvegica" vo1. 4, 1946. This work, little known now perhaps, was a pioneering study. In understanding the evolution of bodies of the solar system, from accretion to present-day processes, ranging from interplanetary plasma to fluid cores, the understanding of flow hydrodynamics is essentia1. From the large scale in planetary atmospheres to geological processes, such as those seen in magma chambers on the Earth, one is dealing with thermal or chemical convection. Count Rumford, the founder of the Royal Institution, studied thermal convection experimentally and realized its practical importance in domestic contexts."
Faster than light - Einstein's relativity is on its way down. It's a Newtonian universe once again.
These proceedings gather invited and contributed talks presented at the XXI DAE-BRNS High Energy Physics Symposium, which was held at the Indian Institute of Technology Guwahati in December 2014. The contributions cover many of the most active research areas in particle physics, namely (i) Electroweak Physics; (ii) QCD and Heavy Ion Physics; (iii) Heavy Flavour Physics and CP Violation; (iv) Neutrino Physics; (v) Astro-particle Physics and Cosmology; (vi) Formal Theory; (vii) Future Colliders and New Machines; and (viii) BSM Physics: SUSY, Extra Dimensions, Composites etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the premiere symposiums organised in India in the field of elementary particle physics, is held every other year and supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy, India. Roughly 250 physicists and researchers participated in the 21st Symposium, discussing the latest advancements in the field in 18 plenary review talks, 15 invited mini-review talks and approximately 130 contributed presentations. Bringing together the essential content, the book offers a valuable resource for both beginning and advanced researchers in the field.
The International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) was held on 9-12 October, 2013. This three-day congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental & economic perspectives of energy. These proceedings include 63 peer reviewed technical papers, submitted from leading academic and research institutions from over 23 countries, representing some of the most cutting edge research available. The papers included were presented at the congress in the following sessions: General Issues Wind Energy Solar Energy Nuclear Energy Biofuels and Bioenergy Energy Storage Energy Conservation and Efficiency Energy in Buildings Economical and Environmental Issues Environment Energy Requirements Economic Development Materials for Sustainable Energy Hydrogen Production and Storage Photovoltaic Cells Thermionic Converters Batteries and Superconductors Phase Change Materials Fuel Cells Superconductors
This book examines different classical and modern aspects of geophysical data processing and inversion with emphasis on the processing of seismic records in applied seismology.
This book addresses a broad range of problems related to observed manifestations of chaotic motions in galactic and stellar objects, by invoking basic theory, numerical modeling, and observational evidence. For the first time, methods of stochastic dynamics are applied to actually observed astronomical objects, e.g. the gaseous disc of the spiral galaxy NGC 3631. In the latter case, the existence of chaotic trajectories in the boundary of giant vortices was recently found by the calculation of the Lyapunov characteristic number of these trajectories. The reader will find research results on the peculiarities of chaotic system behaviour; a study of the integrals of motion in self-consistent systems; numerical modeling results of the evolution process of disk systems involving resonance excitation of the density waves in spiral galaxies; a review of specific formations in stars and high-energy sources demonstrating their stochastic nature; a discussion of the peculiarities of the precessional motion of the accretion disk and relativistic jets in the double system SS 433; etc. This book stands out as the first one that deals with the problem of chaos in real astrophysical objects. It is intended for graduate and post-graduate students in the fields of non-linear dynamics, astrophysics, planetary and space physics; specifically for those dealing with computer modeling of the relevant processes.
In this thesis two variants of the fast variable elimination method are developed. They are intuitive, simple to implement and give results which are in very good agreement with those found from numerical simulations. The relative simplicity of the techniques makes them ideal for applying to problems featuring demographic stochasticity, for experts and non-experts alike. Within the context of mathematical modelling, fast variable elimination is one of the central tools with which one can simplify a multivariate problem. When used in the context of of deterministic systems, the theory is quite standard, but when stochastic effects are present, it becomes less straightforward to apply. While the introductory and background chapters form an excellent primer to the theory of stochastic population dynamics, the techniques developed can be applied to systems exhibiting a separation of timescales in a variety of fields including population genetics, ecology and epidemiology.
For many years, the two subjects of (1) postglacial rebound and its potential for generating earthquakes and (2) the seismicity of passive continental ml!rgins have been of interest and concern to earth scientists on both sides of the North Atlantic. New data and theoretical interpretations have given rise to vigorous discussions on how much the two phenomena inter-relate and whether a significant controlling factor on seismicity in northeastern North America and Scandinavia is the crustal uplift that has been occurring since the latest ice age. The lack of a good understanding of these phenomena presented a particular problem for engineering seismologists attempting to prepare accurate seismic hazard estimates for facili ties both on land (e. g. , nuclear power stations and radioactive waste repositories) and offshore (e. g. , petroleum production facili ties) . The NATO Advanced Research Workshop programme provided an opportuni ty to bring together a group of relevant geophysicists, geologists and geodesists from both sides of the North Atlantic, and a workshop on "Causes and Effects of Earthquakes at Passive Margins and in Areas of Postglacial Rebound on both Sides of the North Atlantic" was held in Vordingborg, Denmark, 9-13 May 1988. The sup port of the NATO Science Committee is gratefully acknowledged.
Macromolecules in the body form noncovalent associations, such as DNA-protein or protein-protein complexes, that control and regulate numerous cellular functions. Understanding how changes in the concentration and conformation of these macromolecules can trigger physiological responses is essential for researchers developing drug therapies to treat diseases affected by these imbalances. Introduction to Macromolecular Binding Equilibria gives students in medicinal chemistry, pharmaceuticals, and bioengineering the necessary background in biophysical chemistry for research applications in drug discovery and development. Building upon a fundamental knowledge of calculus and physical chemistry, this compact, graduate-level text prepares students for advanced work in solution thermodynamics and binding phenomena and applying methods in this book to their own research. This book describes the underlying theory of binding phenomena and explains how to apply the binding polynomial approach for building models and interpreting data. It also covers practical considerations for setting up binding experiments and describes how to obtain true thermodynamic isotherms unbiased by model assumption via model-free analysis of binding data.
This set comprises 40 volumes covering nineteenth and twentieth century European and American authors. Available as a complete set, mini boxed sets (by theme) or as individual volumes.
The Study of Travelling Interplanetary Phenomena (STIP) was formally established by the International Council of Scientific Unions' Special Committee on Solar-Terrestrial Physics (SCOSTEP) in August 1973 with M. Dryer as Convenor and M. A. Shea as Secretary. The scientific objec tives of STIP are the study and search for understanding of quiet (i.e. normal or background) and active periods in the interplanetary medium. The concepts of informal, extemporaneous interdisciplinary research is continuo sly emphasised, and these concepts have proved to be extremely successful in conducting the very productive studies undertaken by the members. About 200 scientists are actively participating in STIP, their interests ranging from solar physics (insofar as it concerns the initi ation of phenomena which move out from the Sun) to the observation and study of comets and planetary magneto spheres and ionospheres. Solar wind plasma and fields, solar and galactic cosmic rays, interstellar interactions, solar radio astronomy and interplanetary scintillations of discrete radio sources are among the topics of interest." |
You may like...
Potential Theory - ICPT 94 - Proceedings…
Josef Kral, Jaroslav Lukes, …
Hardcover
R4,249
Discovery Miles 42 490
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R174,021
Discovery Miles 1 740 210
The Electrocaloric Effect - Materials…
Andrei L. Kholkin, Oleg V. Pakhomov, …
Paperback
R5,050
Discovery Miles 50 500
Dynamics for Engineers
Bichara B. Muvdi, Amir W. Al-Khafaji, …
Hardcover
R2,959
Discovery Miles 29 590
|