![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This book, a compilation of articles from Karl Lunt's long-running column for Nuts & Volts magazine, is a must-read for all beginner and intermediate-level robotics enthusiasts. Written in a friendly, straightforward manner, it contains entertaining anecdotes as well as practical advice and instruction. The author's stories about his various robotics projects will inspire you to try them yourself; and he shares his tips and code to help you. Possible projects range from transforming a TV remote control into a robot controller to building a robot from a drink cooler. You'll want to build them all; the author's enthusiasm for robotics is contagious!
Data Science: A First Introduction focuses on using the R programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference. The text emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. All source code is available online, demonstrating the use of good reproducible project workflows. Based on educational research and active learning principles, the book uses a modern approach to R and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The book will leave readers well-prepared for data science projects. The book is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates in the University of British Columbia's DSCI100: Introduction to Data Science course.
Dynamic programming is a powerful method for solving optimization problems, but has a number of drawbacks that limit its use to solving problems of very low dimension. To overcome these limitations, author Rein Luus suggested using it in an iterative fashion. Although this method required vast computer resources, modifications to his original scheme have made the computational procedure feasible.
This book presents selected papers from The 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019). Focusing on novel architecture theories, tools, methods, and procedures for digital design and construction in architecture, it promotes dialogs between architecture, engineer, computer science, robotics, and other relevant disciplines to establish a new way of production in the building industry in the digital age. The contents make valuable contributions to academic researchers and engineers in the industry. At the same time, it offers readers new ideas for the application of digital technology.
This proceedings presents the papers of the 3rd EAI International Conference on Robotic Sensor Networks (ROSENET 2019). The conference explores the integration of networks and robotic technologies, which has become a topic of increasing interest for both researchers and developers from academic fields and industries worldwide. The authors posit that big networks will be the main approach to the next generation of robotic research, The book discusses how the explosive number of network models and increasing computational power of computers significantly extends the number of potential applications for robotic technologies while also bringing new challenges to each network's community. The conference provided a platform for researchers to share up-to-date scientific achievements in this field. The conference took place August 17, 2019, Kitakyushu, Japan. Presents the proceedings of the 3rd EAI International Conference on Robotic Sensor Networks (ROSENET 2019), August 17, 2019, Kitakyushu, Japan Features papers on robotic technologies for healthcare, medicine, military and more Includes perspectives from a multi-disciplinary selection of global researchers, academics, and professionals
This book focuses on the calculus of variations, including fundamental theories and applications. This textbook is intended for graduate and higher-level college and university students, introducing them to the basic concepts and calculation methods used in the calculus of variations. It covers the preliminaries, variational problems with fixed boundaries, sufficient conditions of extrema of functionals, problems with undetermined boundaries, variational problems of conditional extrema, variational problems in parametric forms, variational principles, direct methods for variational problems, variational principles in mechanics and their applications, and variational problems of functionals with vector, tensor and Hamiltonian operators. Many of the contributions are based on the authors' research, addressing topics such as the extension of the connotation of the Hilbert adjoint operator, definitions of the other three kinds of adjoint operators, the extremum function theorem of the complete functional, unified Euler equations in variational methods, variational theories of functionals with vectors, modulus of vectors, arbitrary order tensors, Hamiltonian operators and Hamiltonian operator strings, reconciling the Euler equations and the natural boundary conditions, and the application range of variational methods. The book is also a valuable reference resource for teachers as well as science and technology professionals.
This book presents a wide and comprehensive range of issues and problems in various fields of science and engineering, from both theoretical and applied perspectives. The desire to develop more effective and efficient tools and techniques for dealing with complex processes and systems has been a natural inspiration for the emergence of numerous fields of science and technology, in particular control and automation and, more recently, robotics. The contributions gathered here concern the development of methods and algorithms to determine best practices regarding broadly perceived decisions or controls. From an engineering standpoint, many of them focus on how to automate a specific process or complex system. From a tools-based perspective, several contributions address the development of analytic and algorithmic methods and techniques, devices and systems that make it possible to develop and subsequently implement the automation and robotization of crucial areas of human activity. All topics discussed are illustrated with sample applications.
This up-to-the-minute reference/text provides vital information on new approaches to stability, stabilization, control design, and filtering of electronics and computer systems-explicating the latest developments in time-delay systems (TDS) and uncertain time-delay systems (UTDS). Features helpful appendices detailing important facets of matrix theory, standard lemmas and mathematical results, and applications of industry-tested software Utilizing mathematical formality to foster intuitive understanding, Robust Control and Filtering for Time-Delay Systems discusses finite capabilities of data processing and transmission throughout systems analyzes inherent physical phenomena and computational delays impacting system performance showcases the state-space approach in systems representation and analysis defines and delineates concepts of robustness, robust performance, and robust design highlights linear and many classes of nonlinear system theory, matrix theory, and modern control theory describes delays as constant or time-varying, known or unknown, deterministic or stochastic assesses continuous-time and discrete-time systems independently and in relation to each other elucidates stability analysis and control synthesis supplies unification of results on control design and filtering and more Containing over 300 bibliographic citations and more than 1500 equations, Robust Control and Filtering for Time-Delay Systems is a must-read reference for electrical, electronics, computer, and control engineers, and an exceptional text for upper-level undergraduate and graduate students in these disciplines.
This book is a collection of selected papers presented at the First Congress on Intelligent Systems (CIS 2020), held in New Delhi, India, during September 5-6, 2020. It includes novel and innovative work from experts, practitioners, scientists, and decision-makers from academia and industry. It covers topics such as Internet of Things, information security, embedded systems, real-time systems, cloud computing, big data analysis, quantum computing, automation systems, bio-inspired intelligence, cognitive systems, cyber physical systems, data analytics, data/web mining, data science, intelligence for security, intelligent decision making systems, intelligent information processing, intelligent transportation, artificial intelligence for machine vision, imaging sensors technology, image segmentation, convolutional neural network, image/video classification, soft computing for machine vision, pattern recognition, human-computer interaction, robotic devices and systems, autonomous vehicles, intelligent control systems, human motor control, game playing, evolutionary algorithms, swarm optimization, neural network, deep learning, supervised learning, unsupervised learning, fuzzy logic, rough sets, computational optimization, and neuro-fuzzy systems.
This book features a collection of high-quality, peer-reviewed research papers presented at the 8th International Conference on Innovations in Computer Science & Engineering (ICICSE 2020), held at Guru Nanak Institutions, Hyderabad, India, on 28-29 August 2020. It covers the latest research in data science and analytics, cloud computing, machine learning, data mining, big data and analytics, information security and privacy, wireless and sensor networks and IoT applications, artificial intelligence, expert systems, natural language processing, image processing, computer vision and artificial neural networks.
Green Internet of Things (IoT) envisions the concept of reducing the energy consumption of IoT devices and making the environment safe. Considering this factor, this book focuses on both the theoretical and implementation aspects in green computing, next-generation networks or networks that can be utilized in providing green systems through IoT-enabling technologies, that is, the technology behind its architecture and building components. It also encompasses design concepts and related advanced computing in detail. * Highlights the elements and communication technologies in Green IoT * Discusses technologies, architecture and components surrounding Green IoT * Describes advanced computing technologies in terms of smart world, data centres and other related hardware for Green IoT * Elaborates energy-efficient Green IoT Design for real-time implementations * Covers pertinent applications in building smart cities, healthcare devices, efficient energy harvesting and so forth This short-form book is aimed at students, researchers in IoT, clean technologies, computer science and engineering cum Industry R&D researchers.
The primary aim of this volume is to provide researchers and engineers from both academic and industry with up-to-date coverage of new results in the field of robotic welding, intelligent systems and automation. The book is mainly based on papers selected from the 2020 International Conference on Robotic Welding, Intelligence and Automation (RWIA'2020) in Shanghai and Lanzhou, China. The articles show that the intelligentized welding manufacturing (IWM) is becoming an inevitable trend with the intelligentized robotic welding as the key technology. The volume is divided into four logical parts: Intelligent Techniques for Robotic Welding, Sensing of Arc Welding Processing, Modeling and Intelligent Control of Welding Processing, as well as Intelligent Control and its Applications in Engineering.
This book provides a comprehensive introduction to artificial hearts, summarizing the latest advances in basic technologies, design, evaluation, and management. Featuring 11 chapters, it discusses the origins of the artificial heart, the mechanisms of heart failure, and the principles of artificial heart technologies. Further, it offers an overview of rotary pumps and volume-displacement pumps, and addresses total artificial hearts. Lastly, the book covers evaluation, selection, therapy management, challenges, and the latest innovations. Given its scope, it is a valuable resource for researchers and technicians in the area of biomedical engineering, as well as surgeons.
Over the next few decades, millions of people, with varying backgrounds and levels of technical expertise, will have to effectively interact with robotic technologies on a daily basis. This means it will have to be possible to modify robot behavior without explicitly writing code, but instead via a small number of wearable devices or visual demonstrations. At the same time, robots will need to infer and predict humans' intentions and internal objectives on the basis of past interactions in order to provide assistance before it is explicitly requested; this is the basis of imitation learning for robotics. This book introduces readers to robotic imitation learning based on human demonstration with wearable devices. It presents an advanced calibration method for wearable sensors and fusion approaches under the Kalman filter framework, as well as a novel wearable device for capturing gestures and other motions. Furthermore it describes the wearable-device-based and vision-based imitation learning method for robotic manipulation, making it a valuable reference guide for graduate students with a basic knowledge of machine learning, and for researchers interested in wearable computing and robotic learning.
This book presents the proceedings of the 3rd International Conference of IFToMM ITALY, held online on September 9-11, 2020. It includes peer-reviewed papers on the latest advances in mechanism and machine science, discussing topics such as biomechanical engineering, computational kinematics, the history of mechanism and machine science, gearing and transmissions, multi-body dynamics, robotics and mechatronics, the dynamics of machinery, tribology, vibrations, rotor dynamics and vehicle dynamics. A valuable, up-to-date resource, it offers an essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
Since the 1980s, scientists have been researching adaptive structures for materials, for multifunctional elements or even for complete systems. Adaptronics (smart materials, smart structures, smart systems) is a field of distinct interdisciplinarity. The book therefore offers an interdisciplinary view of adaptronic systems, materials and functional elements and their applications. The subject matter integrates various engineering disciplines, from electrical engineering and information technology to manufacturing and control engineering, materials engineering and structural mechanics - to name but a few of the relevant subject areas. Starting from the basic principles and variants of adaptronic systems and functional materials, the textbook explains the different construction methods of functional elements. Building on this, readers learn how to apply this knowledge to active shape control, active vibration control and active vibroacoustics. For each of these topics the author presents current examples from research, discusses research results and future research questions. Each of the nine chapters closes with references to further literature. An index of the mathematical symbols used and a keyword index facilitate learning for readers.The book is aimed at Master's students in engineering courses such as mechanical engineering, aerospace engineering, mechatronics, automotive engineering and related courses. The book provides a comprehensive overview for industrial practitioners who want to familiarize themselves with the field of adaptronics and also serves as a reliable reference book.
This book is the fifth volume in the successful book series Robot Operating System: The Complete Reference. The objective of the book is to provide the reader with comprehensive coverage on the Robot Operating System (ROS), which is currently considered to be the primary development framework for robotics applications, and the latest trends and contributing systems. The content is divided into six parts. Pat I presents for the first time the emerging ROS 2.0 framework, while Part II focuses on multi-robot systems, namely on SLAM and Swarm coordination. Part III provides two chapters on autonomous systems, namely self-driving cars and unmanned aerial systems. In turn, Part IV addresses the contributions of simulation frameworks for ROS. In Part V, two chapters explore robotic manipulators and legged robots. Finally, Part VI presents emerging topics in monocular SLAM and a chapter on fault tolerance systems for ROS. Given its scope, the book will offer a valuable companion for ROS users and developers, helping them deepen their knowledge of ROS capabilities and features.
This book comprises select peer-reviewed papers from the International Conference on Emerging Trends in Electromechanical Technologies & Management (TEMT) 2019. The focus is on current research in interdisciplinary areas of mechanical, electrical, electronics and information technologies, and their management from design to market. The book covers a wide range of topics such as computer integrated manufacturing, additive manufacturing, materials science and engineering, simulation and modelling, finite element analysis, operations and supply chain management, decision sciences, business analytics, project management, and sustainable freight transportation. The book will be of interest to researchers and practitioners of various disciplines, in particular mechanical and industrial engineering.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 5th International Conference on Cable-Driven Parallel Robots (CableCon 2021), held as virtual event on July 7-9, 2021. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
The primary aim of this volume is to provide researchers and engineers from both academic and industry with up-to-date coverage of new results in the field of robotic welding, intelligent systems and automation. The book is mainly based on papers selected from the 2019 International Workshop on Intelligentized Welding Manufacturing (IWIWM'2019) in USA. The articles show that the intelligentized welding manufacturing (IWM) is becoming an inevitable trend with the intelligentized robotic welding as the key technology. The volume is divided into four logical parts: Intelligent Techniques for Robotic Welding, Sensing of Arc Welding Processing, Modeling and Intelligent Control of Welding Processing, as well as Intelligent Control and its Applications in Engineering.
Designed to prepare students to become aeronautical engineers who can face new and challenging situations. Retaining the same philosophy as the two preceding editions, this update emphasizes basic principles rooted in the physics of flight, essential analytical techniques along with typical stability and control realities. This edition features a full set of exercises and a complete Solution's Manual. In keeping with current industry practice, flight equations are presented in dimensional state-vector form. The chapter on closed-loop control has been greatly expanded with details on automatic flight control systems. Uses a real jet transport (the Boeing 747) for many numerical and worked-out examples.
This book focuses on bifurcation and stability in nonlinear discrete systems, including monotonic and oscillatory stability. It presents the local monotonic and oscillatory stability and bifurcation of period-1 fixed-points on a specific eigenvector direction, and discusses the corresponding higher-order singularity of fixed-points. Further, it explores the global analysis of monotonic and oscillatory stability of fixed-points in 1-dimensional discrete systems through 1-dimensional polynomial discrete systems. Based on the Yin-Yang theory of nonlinear discrete systems, the book also addresses the dynamics of forward and backward nonlinear discrete systems, and the existence conditions of fixed-points in said systems. Lastly, in the context of local analysis, it describes the normal forms of nonlinear discrete systems and infinite-fixed-point discrete systems. Examining nonlinear discrete systems from various perspectives, the book helps readers gain a better understanding of the nonlinear dynamics of such systems.
This book offers readers essential insights into system design for deep space probes and describes key aspects such as system design, orbit design, telecommunication, GNC, thermal control, propulsion, aerobraking and scientific payload. Each chapter includes the basic principles, requirements analysis, procedures, equations and diagrams, as well as practical examples that will help readers to understand the research on each technology and the major concerns when it comes to developing deep space probes. An excellent reference resource for researchers and engineers interested in deep space exploration, it can also serve as a textbook for university students and those at institutes involved in aerospace.
This book provides advanced techniques for precision compensation and fault diagnosis of precision motion systems and rotating machinery. Techniques and applications through experiments and case studies for intelligent precision compensation and fault diagnosis are offered along with the introduction of machine learning and deep learning methods. Machine Learning-Based Fault Diagnosis for Industrial Engineering Systems discusses how to formulate and solve precision compensation and fault diagnosis problems. The book includes experimental results on hardware equipment used as practical examples throughout the book. Machine learning and deep learning methods used in intelligent precision compensation and intelligent fault diagnosis are introduced. Applications to deal with relevant problems concerning CNC machining and rotating machinery in industrial engineering systems are provided in detail along with applications used in precision motion systems. Methods, applications, and concepts offered in this book can help all professional engineers and students across many areas of engineering and operations management that are involved in any part of Industry 4.0 transformation. |
![]() ![]() You may like...
Renewable Energy and AI for Sustainable…
Sailesh Iyer, Anand Nayyar, …
Hardcover
R3,302
Discovery Miles 33 020
Groups - Process and Practice
Marianne Corey, Gerald Corey, …
Hardcover
![]()
|