![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This book explains network science and its applications in data analytics for critical infrastructures, engineered systems, and knowledge acquisition. Each chapter describes step-by-step processes of how network science enables and automates data analytics through examples. The book not only dissects modeling techniques and analytical results but also explores the intrinsic development of these models and analyses. This unique approach bridges the gap between theory and practice and channels' managerial and problem-solving skills. Engineers, researchers, and managers would benefit from the extensive theoretical background and practical examples discussed in this book. Advanced undergraduate students and graduate students in mathematics, statistics, engineering, business, public health, and social science may use this book as a one-semester textbook or a reference book. Readers who are more interested in applications may skip Chapter 1 and peruse through the rest of the book with ease.
Since the 1980s, scientists have been researching adaptive structures for materials, for multifunctional elements or even for complete systems. Adaptronics (smart materials, smart structures, smart systems) is a field of distinct interdisciplinarity. The book therefore offers an interdisciplinary view of adaptronic systems, materials and functional elements and their applications. The subject matter integrates various engineering disciplines, from electrical engineering and information technology to manufacturing and control engineering, materials engineering and structural mechanics - to name but a few of the relevant subject areas. Starting from the basic principles and variants of adaptronic systems and functional materials, the textbook explains the different construction methods of functional elements. Building on this, readers learn how to apply this knowledge to active shape control, active vibration control and active vibroacoustics. For each of these topics the author presents current examples from research, discusses research results and future research questions. Each of the nine chapters closes with references to further literature. An index of the mathematical symbols used and a keyword index facilitate learning for readers.The book is aimed at Master's students in engineering courses such as mechanical engineering, aerospace engineering, mechatronics, automotive engineering and related courses. The book provides a comprehensive overview for industrial practitioners who want to familiarize themselves with the field of adaptronics and also serves as a reliable reference book.
In this book the use of ER techniques for the design of self-organising group behaviours, for both simulated and real robots is introduced. The book tries to mediate between two apparently opposed perspectives: engineering and cognitive science. The experiments presented in the book and the results obtained contribute to the assessment of ER not only as a design tool, but also as a methodology for modelling and understanding intelligent adaptive behaviours.
This book offers essential information on China's human spacecraft technologies, reviewing their evolution from theoretical and engineering perspectives. It discusses topics such as the design of manned spaceships, cargo spacecraft, space laboratories, space stations and manned lunar and Mars detection spacecraft. It also addresses various key technologies, e.g. for manned rendezvous, docking and reentry. The book is chiefly intended for researchers, graduate students and professionals in the fields of aerospace engineering, control, electronics & electrical engineering, and related areas.
This advanced textbook introduces the main concepts and advances in systems and control theory, and highlights the importance of geometric ideas in the context of possible extensions to the more recent developments in nonlinear systems theory. Although inspired by engineering applications, the content is presented within a strong theoretical framework and with a solid mathematical background, and the reference models are always finite dimensional, time-invariant multivariable linear systems. The book focuses on the time domain approach, but also considers the frequency domain approach, discussing the relationship between the two approaches, especially for single-input-single-output systems. It includes topics not usually addressed in similar books, such as a comparison between the frequency domain and the time domain approaches, bounded input bounded output stability (including a characterization in terms of canonical decomposition), and static output feedback stabilization for which a simple and original criterion in terms of generalized inverse matrices is proposed. The book is an ideal learning resource for graduate students of control theory and automatic control courses in engineering and mathematics, as well as a reference or self-study guide for engineers and applied mathematicians.
This book focuses on the latest endeavors relating researches and developments conducted in fields of control, robotics and automation. Through more than ten revised and extended articles, the present book aims to provide the most up-to-date state of the art of the aforementioned fields allowing researcher, Ph.D. students and engineers not only updating their knowledge but also benefiting from the source of inspiration that represents the set of selected articles of the book. The deliberate intention of editors to cover as well theoretical facets of those fields as their practical accomplishments and implementations offers the benefit of gathering in the same volume a factual and well-balanced prospect of nowadays research in those topics. Special attention toward "Intelligent Robots and Control" may characterize another benefit of this book.
This book demonstrates bene?ts of abstract and qualitative reasoning that have not received much attention in the context of autonomous robotics before. Bremen, Christian Freksa December 2007 Director of the SFB/TR 8 Spatial Cognition Preface This book addresses spatial representations and reasoning techniques for - bile robot mapping, providing an analysis of fundamental representations and processes involved. A spatial representation based on shape information is p- posed and shape analysis techniques are developed to tackle the correspondence problem in robot mapping. A general mathematical formulation is presented to provide the formal ground for an e?cient matching of con?gurations of objects. This book is a slightly revised version of my doctoral thesis submitted to the Faculty of Mathematics and Computer Science of the University of Bremen, Germany. Manycontributeto the developmentofa dissertation,butsomeofthemstand out. Christian Freksa, I thank you for supporting and encouraging my work, for introducing me to interdisciplinary work, for giving me the freedom to develop this dissertation, and for providing an enjoyable atmosphere to work in. Longin Jan Latecki, thank you for countless in-depth discussions helping me to develop andtopositionmywork,forthefruitfulcollaboration,andformakingaresearch stay possible that has been very valuable to me. I thank the research groups in Bremen and Philadelphia for helpful discussions and feedback, in particular Jan Oliver Wallgrun. I also thank Kai-Florian Richter, Sven Bertel, and Lutz Frommberger for feedback on this work. Robert Ross, thank you for helping to proof-read this dissertation.
This volume constitutes the results of the International Conference on Underwater Environment, MOQESM'14, held at "Le Quartz" Conference Center in Brest, France, on October 14-15, 2014, within the framework of the 9th Sea Tech Week, International Marine Science and Technology Event. The objective of MOQESM'14 was to bring together researchers from both academia and industry, interested in marine robotics and hydrography with application to the coastal environment mapping and underwater infrastructures surveys. The common thread of the conference is the combination of technical control, perception, and localization, typically used in robotics, with the methods of mapping and bathymetry. The papers presented in this book focus on two main topics. Firstly, coastal and infrastructure mapping is addressed, focusing not only on hydrographic systems, but also on positioning systems, bathymetry, and remote sensing. The proposed methods rely on acoustic sensors such as side scan sonars, multibeam echo sounders, phase-measuring bathymetric sonars, as well as optical systems such as underwater laser scanners. Accurate underwater positioning is also addressed in the case of the use of a single acoustic beacon, and the latest advances in increasing the vertical precision of Global Navigation Satellite System (GNSS) are also presented. Most of the above mentioned works are closely related to autonomous marine vehicles. Consequently, the second part of the book describes some works concerning the methods associated with such type of vehicles. The selected papers focus on autonomous surface or underwater vehicles, detailing new approaches for localization, modeling, control, mapping, obstacle detection and avoidance, surfacing, and software development. Some of these works imply acoustics sensing as well as image processing. Set membership methods are also used in some papers. The applications of the work presented in this book concern in particular oceanography, monitoring of oil and gas infrastructures, and military field.
This book introduces the technological innovations of robotic vehicles. It presents the concepts required for self-driving cars on the road. Besides, readers can gain invaluable knowledge in the construction, programming, and control of the six-legged robot. The book also presents the controllers and aerodynamics of several different types of rotorcrafts. It includes the simulation and flight of the various kinds of rotor-propelled air vehicles under each of their different aerodynamics environment. The book is suitable for academia, educators, students, and researchers who are interested in autonomous vehicles, robotics, and rotor-propelled vehicles.
This book focuses on how to implement optimal control problems via the variational method. It studies how to implement the extrema of functional by applying the variational method and covers the extrema of functional with different boundary conditions, involving multiple functions and with certain constraints etc. It gives the necessary and sufficient condition for the (continuous-time) optimal control solution via the variational method, solves the optimal control problems with different boundary conditions, analyzes the linear quadratic regulator & tracking problems respectively in detail, and provides the solution of optimal control problems with state constraints by applying the Pontryagin's minimum principle which is developed based upon the calculus of variations. And the developed results are applied to implement several classes of popular optimal control problems and say minimum-time, minimum-fuel and minimum-energy problems and so on. As another key branch of optimal control methods, it also presents how to solve the optimal control problems via dynamic programming and discusses the relationship between the variational method and dynamic programming for comparison. Concerning the system involving individual agents, it is also worth to study how to implement the decentralized solution for the underlying optimal control problems in the framework of differential games. The equilibrium is implemented by applying both Pontryagin's minimum principle and dynamic programming. The book also analyzes the discrete-time version for all the above materials as well since the discrete-time optimal control problems are very popular in many fields.
This book is focused on the development of rigorous, yet practical, methods for the design of advanced process control systems to improve process operational safety and cybersecurity for a wide range of nonlinear process systems. Process Operational Safety and Cybersecurity develops designs for novel model predictive control systems accounting for operational safety considerations, presents theoretical analysis on recursive feasibility and simultaneous closed-loop stability and safety, and discusses practical considerations including data-driven modeling of nonlinear processes, characterization of closed-loop stability regions and computational efficiency. The text then shifts focus to the design of integrated detection and model predictive control systems which improve process cybersecurity by efficiently detecting and mitigating the impact of intelligent cyber-attacks. The book explores several key areas relating to operational safety and cybersecurity including: machine-learning-based modeling of nonlinear dynamical systems for model predictive control; a framework for detection and resilient control of sensor cyber-attacks for nonlinear systems; insight into theoretical and practical issues associated with the design of control systems for process operational safety and cybersecurity; and a number of numerical simulations of chemical process examples and Aspen simulations of large-scale chemical process networks of industrial relevance. A basic knowledge of nonlinear system analysis, Lyapunov stability techniques, dynamic optimization, and machine-learning techniques will help readers to understand the methodologies proposed. The book is a valuable resource for academic researchers and graduate students pursuing research in this area as well as for process control engineers. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
The proposed book presents recent breakthroughs for the control of distributed parameter systems and follows on from a workshop devoted to this topic. It introduces new and unified visions of the challenging control problems raised by distributed parameter systems. The book collects contributions written by prominent international experts in the control community, addressing a wide variety of topics. It spans the full range from theoretical research to practical implementation and follows three traverse axes: emerging ideas in terms of control strategies (energy shaping, prediction-based control, numerical control, input saturation), theoretical concepts for interconnected systems (with potential non-linear actuation dynamics), advanced applications (cable-operated elevators, traffic networks), and numerical aspects. Cutting-edge experts in the field contributed in this volume, making it a valuable reference source for control practitioners, graduate students, and scientists researching practical and theoretical solutions to the challenging problems raised by distributed parameter systems.
This book is intended for researchers active in the field of (blind) system identification and aims to provide new identification ideas/insights for dealing with challenging system identification problems. It presents a comprehensive overview of the state-of-the-art in the area, which would save a lot of time and avoid collecting the scattered information from research papers, reports and unpublished work. Besides, it is a self-contained book by including essential algebraic, system and optimization theories, which can help graduate students enter the amazing blind system identification world with less effort.
This book introduces the key technologies in the manufacture of double-mass line vibrating silicon micromechanical gyroscope, respectively. The design of gyrostructure, detection technology, orthogonal correction technology, the influence of temperature and the design of measurement and control system framework are introduced in detail, with illustrations for easy understanding. It presents the principle, structure and related technology of silicon-based MEMS gyroscope. The content enlightens the researchers of silicon-based MEMS gyroscopes and gives readers a new understanding of the structural design of silicon-based gyroscopes and the design of dual-mass gyroscopes.
Unmanned Aircraft Systems (UAS) have seen unprecedented levels of growth during the last decade in both military and civilian domains. However, it is anticipated that civilian applications will be dominant in the future, although there are still barriers to be overcome and technical challenges to be met. For example, integrating UAS into civilian space, fully autonomous navigation, see-detect-and-avoid systems, smart UAS designs, system integration, vision-based navigation, logistics and training, to name but a few areas, will be of prime importance in the near future. This special volume is the outcome of research presented at the International Symposium on Unmanned Aerial Vehicles, held in Dubai in June 2010, and presents state-of-the-art findings on topics related to: UAS operations and integration into the national airspace system; UAS navigation and control; micro-, mini-, small UAVs; UAS simulation testbeds and frameworks; UAS research platforms and applications; UAS applications. This book aims at serving as a guide tool on UAS for engineers and practitioners, academics, government agencies and industry. This is a hardbound spinoff from the Journal of Intelligent and Robotic Systems, Volume 61:1-4, 2011.
The essence of this work is the control of electromechanical systems, such as manipulators, electric machines, and power converters. The common thread that links together the results presented here is the passivity property, which is at present in numerous electrical and mechanical systems, and which has great relevance in control engineering at this time. Amongst other topics, the authors cover: Euler-Lagrange Systems, Mechanical Systems, Generalised AC Motors, Induction Motor Control, Robots with AC Drives, and Perspectives and Open Problems. The authors have extensive experience of research and application in the field of control of electromechanical systems, which they have summarised here in this self-contained volume. While written in a strictly mathematical way, it is also elementary, and will be accessible to a wide-ranging audience, including both practitioners and researchers in this field, as well as students.
During the last years there has been an increasing interest in the area of service robots. Under this category we find robots working in tasks such as elderly care, guiding, office and domestic assistance, inspection, and many more. Service robots usually work in indoor environments designed for humans, with offices and houses being some of the most typical examples. These environments are typically divided into places with different functionalities like corridors, rooms or doorways. The ability to learn such semantic categories from sensor data enables a mobile robot to extend its representation of the environment, and to improve its capabilities. As an example, natural language terms like corridor or room can be used to indicate the position of the robot in a more intuitive way when communicating with humans. This book presents several approaches to enable a mobile robot to categorize places in indoor environments. The categories are indicated by terms which represent the different regions in these environments. The objective of this work is to enable mobile robots to perceive the spatial divisions in indoor environments in a similar way as people do. This is an interesting step forward to the problem of moving the perception of robots closer to the perception of humans. Many approaches introduced in this book come from the area of pattern recognition and classification. The applied methods have been adapted to solve the specific problem of place recognition. In this regard, this work is a useful reference to students and researchers who want to introduce classification techniques to help solve similar problems in mobile robotics.
This book comprises select proceedings of the international conference ETAEERE 2020. This volume covers latest research in advanced approaches in automation, control based devices, and adaptive learning mechanisms. The contents discuss the complex operations and behaviors of different systems or machines in different environments. Some of the areas covered include control of linear and nonlinear systems, intelligent systems, stochastic control, knowledge-based systems applications, fault diagnosis and tolerant control, and real-time control applications. The contents of this volume can be useful for researchers as well as professionals working in control and automation.
The Chinese Society of Aeronautics and Astronautics holds the Youth Science and Technology Forum biannually, which aims to assess the state of aviation science and technology, recognize advanced scientific and technological accomplishments, foster the development of young aviation science and technology talents, and provide a platform for young science and technology workers to track the frontier of science and technology, exchange novel ideas, and accurately meet the needs of the aviation industry. This book contains original, peer-reviewed research papers from the conference. Topics covered include, but are not limited to, navigation, guidance and control technologies, key technologies for aircraft design and overall optimization, aviation test technologies, aviation airborne systems, electromechanical technologies, structural design, aerodynamics and flight mechanics, other related technologies, advanced aviation materials and manufacturing technologies, advanced aviation propulsion technologies, and civil aviation transportation. Researchers, engineers, and students find this book to be a useful resource because the articles provided here discuss the most recent advancements in aviation science and technology.
Today, the development of robots is making steady advances. In particular, the Robot Operating System (ROS) offers a unified platform that greatly facilitates the development of robots and has become a new hotspot for learning and application in the field of robotics research.This book introduces readers to the key technologies and development methods for ROS-based intelligent robots. Covering both the development history of robots and various aspects of programming robots, it offers effective support for beginners.The book is divided into three parts, the first of which introduces the basics of robots, including their definition, development, composition, and key technologies. In turn, the second part covers the hardware and software components and the implementation of functions such as vision, speech, grasping, and autonomous navigation. These functions need to work together to provide user-friendlier and more intelligent service. The third part shows how to develop robots with different functions in different application scenarios.Combining theoretical and practical aspects, with a strong focus on application, this work can be used as a reference book for robotics-related courses. Moreover, it will benefit all readers who are interested in intelligent robot development, sharing essential insights into developing service robots based on ROS.
This unique textbook comprehensively introduces the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queueing theory, discrete-event simulation, and concurrent estimation techniques. Topics and features: detailed treatment of automata and language theory in the context of discrete event systems, including application to state estimation and diagnosis comprehensive coverage of centralized and decentralized supervisory control of partially-observed systems timed models, including timed automata and hybrid automata stochastic models for discrete event systems and controlled Markov chains discrete event simulation an introduction to stochastic hybrid systems sensitivity analysis and optimization of discrete event and hybrid systems new in the third edition: opacity properties, enhanced coverage of supervisory control, overview of latest software tools This proven textbook is essential to advanced-level students and researchers in a variety of disciplines where the study of discrete event systems is relevant: control, communications, computer engineering, computer science, manufacturing engineering, transportation networks, operations research, and industrial engineering. Christos G. Cassandras is Distinguished Professor of Engineering, Professor of Systems Engineering, and Professor of Electrical and Computer Engineering at Boston University. Stephane Lafortune is Professor of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor.
This book tackles the latest research trends in technology acceptance models and theories. It presents high-quality empirical and review studies focusing on the main theoretical models and their applications across various technologies and contexts. It also provides insights into the theoretical and practical aspects of different technological innovations that assist decision-makers in formulating the required policies and procedures for adopting a specific technology.
This book introduces intelligent manufacturing system planning, design, and implementation, through the deep integration of the Internet, big data, artificial intelligence, and manufacturing process, to promote the transformation and upgrading of enterprises. This book shows the implementation of intelligent manufacturing process with 12 benchmarking enterprises, discusses the planning, implementation, and control of intelligent manufacturing system technology and method of theory, and analyzes the five hierarchies of intelligent manufacturing system, the five stages of life cycle, and five kinds of intelligent depth. The content can cultivate the reader's vocational ability to develop intelligent solutions and implementation based on complex, uncertain environment needs. This book will be interesting and useful to a wide readership in the various fields of management, information science, and engineering science.
This book offers readers essential insights into system design for deep space probes and describes key aspects such as system design, orbit design, telecommunication, GNC, thermal control, propulsion, aerobraking and scientific payload. Each chapter includes the basic principles, requirements analysis, procedures, equations and diagrams, as well as practical examples that will help readers to understand the research on each technology and the major concerns when it comes to developing deep space probes. An excellent reference resource for researchers and engineers interested in deep space exploration, it can also serve as a textbook for university students and those at institutes involved in aerospace.
This book includes high-quality research papers presented at Symposium on Power Electronic and Renewable Energy Systems Control (PERESC 2020), which is held at the School of Electrical Sciences, IIT Bhubaneswar, Odisha, India, during 4-5 December 2020. The book covers original work in power electronics which has greatly enabled integration of renewable and distributed energy systems, control of electric machine drives, high voltage system control and operation. The book is highly useful for academicians, engineers, researchers and students to be familiar with the latest state of the art in power electronics technology and its applications. |
You may like...
Discrete Networked Dynamic Systems…
Magdi S. Mahmoud, Yuanqing Xia
Paperback
R2,649
Discovery Miles 26 490
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Artificial Intelligence for Future…
Rabindra Nath Shaw, Ankush Ghosh, …
Paperback
R3,864
Discovery Miles 38 640
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
|