![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
The interest in climbing and walking robots (CLAWAR) has intensified in recent years, and novel solutions for complex and very diverse applications have been anticipated by means of significant progress in this area of - botics. Moreover, the amalgamation of original ideas and related inno- tions, search for new potential applications and the use of state of the art support technologies permit to foresee an important step forward and a significant socio-economic impact of advanced robot technology in the - ture. This is leading to the creation and consolidation of a mobile service robotics sector where most of the robotics activities are foreseen in the - ture. The technology is now maturing to become of real benefit to society and methods of realizing this potential quickly are being eagerly explored. Robot standards and modularity are key to this and form key components of the research presented here. CLAWAR 2005 is the eighth in a series of international conferences - ganised annually since 1998 with the aim to report on latest research and development findings and to provide a forum for scientific discussion and debate within the mobile service robotics community. The series has grown in its popularity significantly over the years, and has attracted - searchers and developers from across the globe. The CLAWAR 2005 p- ceedings reports state of the art scientific and developmental findings p- sented during the CLAWAR 2005 conference in 131 technical presentations by authors from 27 countries covering the five continents.
This monograph presents innovative research regarding the body experience of human individuals who are using assistive robotic devices such as wearable robots or teleoperation systems. The focus is set on human-in-the-loop experiments that help to empirically evaluate how users experience devices. Moreover, these experiments allow for further examination of the underlying mechanisms of body experience through extending existing psychological paradigms, e.g., by disentangling tactile feedback from contacts. Besides reporting and discussing psychological examinations, the influence of various aspects of engineering design is investigated, e.g., different implementations of haptic interfaces or robot control. As haptics are of paramount importance in this tight type of human-robot interaction, it is explored with respect to modality as well as temporal and spatial effects. The first part of the book motivates the research topic and gives an in-depth analysis of the experimental requirements. The second and third part present experimental designs and studies of human-robot body experience regarding the upper and lower limbs as well as cognitive models to predict them. The fourth part discusses a multitude of design considerations and provides directions to guide future research on bidirectional human-machine interfaces and non-functional haptic feedback.
This book provides a thorough guide to the use of numerical methods in energy systems and applications. It presents methods for analysing engineering applications for energy systems, discussing finite difference, finite element, and other advanced numerical methods. Solutions to technical problems relating the application of these methods to energy systems are also thoroughly explored. Readers will discover diverse perspectives of the contributing authors and extensive discussions of issues including: * a wide variety of numerical methods concepts and related energy systems applications;* systems equations and optimization, partial differential equations, and finite difference method;* methods for solving nonlinear equations, special methods, and their mathematical implementation in multi-energy sources;* numerical investigations of electrochemical fields and devices; and* issues related to numerical approaches and optimal integration of energy consumption. This is a highly informative and carefully presented book, providing scientific and academic insight for readers with an interest in numerical methods and energy systems.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 5th International Conference on Cable-Driven Parallel Robots (CableCon 2021), held as virtual event on July 7-9, 2021. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This book is about algebraic and differential methods, as well as fractional calculus, applied to diagnose and reject faults in nonlinear systems, which are of integer or fractional order. This represents an extension of a very important and widely studied problem in control theory, namely fault diagnosis and rejection (using differential algebraic approaches), to systems presenting fractional dynamics, i.e. systems whose dynamics are represented by derivatives and integrals of non-integer order. The authors offer a thorough overview devoted to fault diagnosis and fault-tolerant control applied to fractional-order and integer-order dynamical systems, and they introduce new methodologies for control and observation described by fractional and integer models, together with successful simulations and real-time applications. The basic concepts and tools of mathematics required to understand the methodologies proposed are all clearly introduced and explained. Consequently, the book is useful as supplementary reading in courses of applied mathematics and nonlinear control theory. This book is meant for engineers, mathematicians, physicists and, in general, to researchers and postgraduate students in diverse areas who have a minimum knowledge of calculus. It also contains advanced topics for researchers and professionals interested in the area of states and faults estimation.
The science associated with the development of artificial sen sory systems is occupied primarily with determining how information about the world can be extracted from sensory data. For example, computational vision is, for the most part, concerned with the de velopment of algorithms for distilling information about the world and recognition of various objects in the environ (e. g. localization ment) from visual images (e. g. photographs or video frames). There are often a multitude of ways in which a specific piece of informa tion about the world can be obtained from sensory data. A subarea of research into sensory systems has arisen which is concerned with methods for combining these various information sources. This field is known as data fusion, or sensor fusion. The literature on data fusion is extensive, indicating the intense interest in this topic, but is quite chaotic. There are no accepted approaches, save for a few special cases, and many of the best methods are ad hoc. This book represents our attempt at providing a mathematical foundation upon which data fusion algorithms can be constructed and analyzed. The methodology that we present in this text is mo tivated by a strong belief in the importance of constraints in sensory information processing systems. In our view, data fusion is best un derstood as the embedding of multiple constraints on the solution to a sensory information processing problem into the solution pro cess."
This book describes new energy saving methods and technologies for heat power engineering. The book is devoted to topical issues of energy and related industries. Leading Ukrainian scientists from both scientific institutes and educational universities took part in its creation. The research results are presented in 6 parts: electrical engineering, heat power engineering, nuclear power engineering, fossil fuels, cybersecurity and computer science, environmental safety. Results of regulating of operating modes and applicability of model checking technique in power systems are showed. Separate block of questions regarding the functioning of nuclear power plants, their waste and preventive measures of protection against negative effects on living organisms (including, for example, the Chernobyl nuclear power plant) is considered. The results of the peculiarities of the extraction, purification and use of fossil fuels are presented. In some chapters, presented the results on improving the cybersecurity of energy systems and its resilience to various threats, including the use of 5G technology. Traditionally for this series, issues of ecological safety, the impact of different energy systems on the environment and its protection are considered. A book is for researchers, engineers, as well as lecturers and postgraduates of higher education institutions dealing with energy sector, power systems, ecological safety, etc.
The inspiration from Biology and the Natural Evolution process has become a research area within computer science. For instance, the description of the arti?cial neuron given by McCulloch and Pitts was inspired from biological observations of neural mechanisms; the power of evolution in nature in the diverse species that make up our world has been related to a particular form of problem solving based on the idea of survival of the ?ttest; similarly, - ti?cial immune systems, ant colony optimisation, automated self-assembling programming, membrane computing, etc. also have their roots in natural phenomena. The ?rst and second editions of the International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO), were held in Granada, Spain, 2006, and in Acireale, Italy, 2007, respectively. As in these two previous editions, the aim of NICSO 2008, held in Tenerife, Spain, was to provide a forum were the latest ideas and state of the art research related to nature inspired cooperative strategies for problem solving were discussed. The contributions collected in this book were strictly peer reviewed by at least three members of the international programme committee, to whom we are indebted for their support and assistance. The topics covered by the contributionsincludenature-inspiredtechniqueslikeGeneticAlgorithms, Ant Colonies, Amorphous Computing, Arti?cial Immune Systems, Evolutionary Robotics, Evolvable Systems, Membrane Computing, Quantum Computing, Software Self Assembly, Swarm Intelligence, etc
The essays in this book, written by researchers from both humanities and science, describe various theoretical and experimental approaches to adding medical ethics to a machine, what design features are necessary in order to achieve this, philosophical and practical questions concerning justice, rights, decision-making and responsibility in medical contexts, and accurately modeling essential physician-machine-patient relationships. In medical settings, machines are in close proximity with human beings: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old and with medical professionals. Machines in these contexts are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity and privacy. As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical ethics? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for empathy and emotion detection necessary? What about consciousness? This collection is the first book that addresses these 21st-century concerns.
The proceedings collect selected papers from the 11th International Workshop of Advanced Manufacturing and Automation (IWAMA 2021), held in Zhengzhou Polytechnic, China on 11 - 12 October, 2021. Topics focusing on novel techniques for manufacturing and automation in Industry 4.0 are now vital factors for the maintenance and improvement of the economy of a nation and the quality of life. It will help academic researchers and engineering to implement the concept, theory and methods in Industry 4.0 which has been a hot topic. These proceedings will make valuable contributions to academic researchers, engineers in the industry for the challenges in the 4th industry revolution and smart factories.
Force and Position Control of Mechatronic Systems provides an overview of the general concepts and technologies in the area of force and position control. Novel ideas and innovations related to this area are presented and reported in detail, and examples of applications in medical technology are given. The book begins by introducing force sensing, and modelling of contacting objects. In then moves steadily through a variety of topics, including: * disturbance observer-based force estimation; * force-based supervisory control; * stabilization systems; * controller design; and * control of tube insertion procedures. This book will be of interest to researchers, engineers and students interested in force control, particularly those with a focus on medical applications of these ideas. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book presents several novel constructive methodologies for global stabilization and H-infinity control in switched dynamic systems by using the systems' structure information. The main features of these new approaches are twofold: i) Novel Lyapunov functions are constructed and new switching strategies are designed to guarantee global finite-time stabilization of the closed-loop switched dynamic systems,while ii) without posing any internal stability requirements on subsystems, the standard H-infinity control problem of the switched dynamic systems is solved by means of dwell-time switching techniques. Systematically presenting constructive methods for analyzing and synthesizing switched systems, the content is of great significance to theoretical research and practical applications involving switched systems alike. The book provides a unified framework for stability analysis, stabilization and H-infinity control of switched systems, making it a valuable resource for researchers and graduate students who want to learn about the state of the art in the analysis and synthesis of switched systems, as well as recent advances in switched linear systems. In addition, it offers a wealth of cutting-edge constructive methods and algorithm designs for researchers who work with switched dynamic systems and graduate students of control theory and control engineering.
This book explains network science and its applications in data analytics for critical infrastructures, engineered systems, and knowledge acquisition. Each chapter describes step-by-step processes of how network science enables and automates data analytics through examples. The book not only dissects modeling techniques and analytical results but also explores the intrinsic development of these models and analyses. This unique approach bridges the gap between theory and practice and channels' managerial and problem-solving skills. Engineers, researchers, and managers would benefit from the extensive theoretical background and practical examples discussed in this book. Advanced undergraduate students and graduate students in mathematics, statistics, engineering, business, public health, and social science may use this book as a one-semester textbook or a reference book. Readers who are more interested in applications may skip Chapter 1 and peruse through the rest of the book with ease.
Since the 1980s, scientists have been researching adaptive structures for materials, for multifunctional elements or even for complete systems. Adaptronics (smart materials, smart structures, smart systems) is a field of distinct interdisciplinarity. The book therefore offers an interdisciplinary view of adaptronic systems, materials and functional elements and their applications. The subject matter integrates various engineering disciplines, from electrical engineering and information technology to manufacturing and control engineering, materials engineering and structural mechanics - to name but a few of the relevant subject areas. Starting from the basic principles and variants of adaptronic systems and functional materials, the textbook explains the different construction methods of functional elements. Building on this, readers learn how to apply this knowledge to active shape control, active vibration control and active vibroacoustics. For each of these topics the author presents current examples from research, discusses research results and future research questions. Each of the nine chapters closes with references to further literature. An index of the mathematical symbols used and a keyword index facilitate learning for readers.The book is aimed at Master's students in engineering courses such as mechanical engineering, aerospace engineering, mechatronics, automotive engineering and related courses. The book provides a comprehensive overview for industrial practitioners who want to familiarize themselves with the field of adaptronics and also serves as a reliable reference book.
In this book the use of ER techniques for the design of self-organising group behaviours, for both simulated and real robots is introduced. The book tries to mediate between two apparently opposed perspectives: engineering and cognitive science. The experiments presented in the book and the results obtained contribute to the assessment of ER not only as a design tool, but also as a methodology for modelling and understanding intelligent adaptive behaviours.
This book offers essential information on China's human spacecraft technologies, reviewing their evolution from theoretical and engineering perspectives. It discusses topics such as the design of manned spaceships, cargo spacecraft, space laboratories, space stations and manned lunar and Mars detection spacecraft. It also addresses various key technologies, e.g. for manned rendezvous, docking and reentry. The book is chiefly intended for researchers, graduate students and professionals in the fields of aerospace engineering, control, electronics & electrical engineering, and related areas.
This advanced textbook introduces the main concepts and advances in systems and control theory, and highlights the importance of geometric ideas in the context of possible extensions to the more recent developments in nonlinear systems theory. Although inspired by engineering applications, the content is presented within a strong theoretical framework and with a solid mathematical background, and the reference models are always finite dimensional, time-invariant multivariable linear systems. The book focuses on the time domain approach, but also considers the frequency domain approach, discussing the relationship between the two approaches, especially for single-input-single-output systems. It includes topics not usually addressed in similar books, such as a comparison between the frequency domain and the time domain approaches, bounded input bounded output stability (including a characterization in terms of canonical decomposition), and static output feedback stabilization for which a simple and original criterion in terms of generalized inverse matrices is proposed. The book is an ideal learning resource for graduate students of control theory and automatic control courses in engineering and mathematics, as well as a reference or self-study guide for engineers and applied mathematicians.
This book focuses on the latest endeavors relating researches and developments conducted in fields of control, robotics and automation. Through more than ten revised and extended articles, the present book aims to provide the most up-to-date state of the art of the aforementioned fields allowing researcher, Ph.D. students and engineers not only updating their knowledge but also benefiting from the source of inspiration that represents the set of selected articles of the book. The deliberate intention of editors to cover as well theoretical facets of those fields as their practical accomplishments and implementations offers the benefit of gathering in the same volume a factual and well-balanced prospect of nowadays research in those topics. Special attention toward "Intelligent Robots and Control" may characterize another benefit of this book.
This book demonstrates bene?ts of abstract and qualitative reasoning that have not received much attention in the context of autonomous robotics before. Bremen, Christian Freksa December 2007 Director of the SFB/TR 8 Spatial Cognition Preface This book addresses spatial representations and reasoning techniques for - bile robot mapping, providing an analysis of fundamental representations and processes involved. A spatial representation based on shape information is p- posed and shape analysis techniques are developed to tackle the correspondence problem in robot mapping. A general mathematical formulation is presented to provide the formal ground for an e?cient matching of con?gurations of objects. This book is a slightly revised version of my doctoral thesis submitted to the Faculty of Mathematics and Computer Science of the University of Bremen, Germany. Manycontributeto the developmentofa dissertation,butsomeofthemstand out. Christian Freksa, I thank you for supporting and encouraging my work, for introducing me to interdisciplinary work, for giving me the freedom to develop this dissertation, and for providing an enjoyable atmosphere to work in. Longin Jan Latecki, thank you for countless in-depth discussions helping me to develop andtopositionmywork,forthefruitfulcollaboration,andformakingaresearch stay possible that has been very valuable to me. I thank the research groups in Bremen and Philadelphia for helpful discussions and feedback, in particular Jan Oliver Wallgrun. I also thank Kai-Florian Richter, Sven Bertel, and Lutz Frommberger for feedback on this work. Robert Ross, thank you for helping to proof-read this dissertation.
Networked Control Systems: Cloud Control and Secure Control explores new technological developments in networked control systems (NCS), including new techniques, such as event-triggered, secure and cloud control. It provides the fundamentals and underlying issues of networked control systems under normal operating environments and under cyberphysical attack. The book includes a critical examination of the principles of cloud computing, cloud control systems design, the available techniques of secure control design to NCS's under cyberphysical attack, along with strategies for resilient and secure control of cyberphysical systems. Smart grid infrastructures are also discussed, providing diagnosis methods to analyze and counteract impacts. Finally, a series of practical case studies are provided to cover a range of NCS's. This book is an essential resource for professionals and graduate students working in the fields of networked control systems, signal processing and distributed estimation.
This volume constitutes the results of the International Conference on Underwater Environment, MOQESM'14, held at "Le Quartz" Conference Center in Brest, France, on October 14-15, 2014, within the framework of the 9th Sea Tech Week, International Marine Science and Technology Event. The objective of MOQESM'14 was to bring together researchers from both academia and industry, interested in marine robotics and hydrography with application to the coastal environment mapping and underwater infrastructures surveys. The common thread of the conference is the combination of technical control, perception, and localization, typically used in robotics, with the methods of mapping and bathymetry. The papers presented in this book focus on two main topics. Firstly, coastal and infrastructure mapping is addressed, focusing not only on hydrographic systems, but also on positioning systems, bathymetry, and remote sensing. The proposed methods rely on acoustic sensors such as side scan sonars, multibeam echo sounders, phase-measuring bathymetric sonars, as well as optical systems such as underwater laser scanners. Accurate underwater positioning is also addressed in the case of the use of a single acoustic beacon, and the latest advances in increasing the vertical precision of Global Navigation Satellite System (GNSS) are also presented. Most of the above mentioned works are closely related to autonomous marine vehicles. Consequently, the second part of the book describes some works concerning the methods associated with such type of vehicles. The selected papers focus on autonomous surface or underwater vehicles, detailing new approaches for localization, modeling, control, mapping, obstacle detection and avoidance, surfacing, and software development. Some of these works imply acoustics sensing as well as image processing. Set membership methods are also used in some papers. The applications of the work presented in this book concern in particular oceanography, monitoring of oil and gas infrastructures, and military field.
This book introduces the technological innovations of robotic vehicles. It presents the concepts required for self-driving cars on the road. Besides, readers can gain invaluable knowledge in the construction, programming, and control of the six-legged robot. The book also presents the controllers and aerodynamics of several different types of rotorcrafts. It includes the simulation and flight of the various kinds of rotor-propelled air vehicles under each of their different aerodynamics environment. The book is suitable for academia, educators, students, and researchers who are interested in autonomous vehicles, robotics, and rotor-propelled vehicles.
This book focuses on how to implement optimal control problems via the variational method. It studies how to implement the extrema of functional by applying the variational method and covers the extrema of functional with different boundary conditions, involving multiple functions and with certain constraints etc. It gives the necessary and sufficient condition for the (continuous-time) optimal control solution via the variational method, solves the optimal control problems with different boundary conditions, analyzes the linear quadratic regulator & tracking problems respectively in detail, and provides the solution of optimal control problems with state constraints by applying the Pontryagin's minimum principle which is developed based upon the calculus of variations. And the developed results are applied to implement several classes of popular optimal control problems and say minimum-time, minimum-fuel and minimum-energy problems and so on. As another key branch of optimal control methods, it also presents how to solve the optimal control problems via dynamic programming and discusses the relationship between the variational method and dynamic programming for comparison. Concerning the system involving individual agents, it is also worth to study how to implement the decentralized solution for the underlying optimal control problems in the framework of differential games. The equilibrium is implemented by applying both Pontryagin's minimum principle and dynamic programming. The book also analyzes the discrete-time version for all the above materials as well since the discrete-time optimal control problems are very popular in many fields.
This book is focused on the development of rigorous, yet practical, methods for the design of advanced process control systems to improve process operational safety and cybersecurity for a wide range of nonlinear process systems. Process Operational Safety and Cybersecurity develops designs for novel model predictive control systems accounting for operational safety considerations, presents theoretical analysis on recursive feasibility and simultaneous closed-loop stability and safety, and discusses practical considerations including data-driven modeling of nonlinear processes, characterization of closed-loop stability regions and computational efficiency. The text then shifts focus to the design of integrated detection and model predictive control systems which improve process cybersecurity by efficiently detecting and mitigating the impact of intelligent cyber-attacks. The book explores several key areas relating to operational safety and cybersecurity including: machine-learning-based modeling of nonlinear dynamical systems for model predictive control; a framework for detection and resilient control of sensor cyber-attacks for nonlinear systems; insight into theoretical and practical issues associated with the design of control systems for process operational safety and cybersecurity; and a number of numerical simulations of chemical process examples and Aspen simulations of large-scale chemical process networks of industrial relevance. A basic knowledge of nonlinear system analysis, Lyapunov stability techniques, dynamic optimization, and machine-learning techniques will help readers to understand the methodologies proposed. The book is a valuable resource for academic researchers and graduate students pursuing research in this area as well as for process control engineers. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
The proposed book presents recent breakthroughs for the control of distributed parameter systems and follows on from a workshop devoted to this topic. It introduces new and unified visions of the challenging control problems raised by distributed parameter systems. The book collects contributions written by prominent international experts in the control community, addressing a wide variety of topics. It spans the full range from theoretical research to practical implementation and follows three traverse axes: emerging ideas in terms of control strategies (energy shaping, prediction-based control, numerical control, input saturation), theoretical concepts for interconnected systems (with potential non-linear actuation dynamics), advanced applications (cable-operated elevators, traffic networks), and numerical aspects. Cutting-edge experts in the field contributed in this volume, making it a valuable reference source for control practitioners, graduate students, and scientists researching practical and theoretical solutions to the challenging problems raised by distributed parameter systems. |
You may like...
Computer and Computing Technologies in…
Daoliang Li, Yingyi Chen
Hardcover
R2,749
Discovery Miles 27 490
Probabilistic Nodes Combination (PNC…
Dariusz Jacek Jakobczak
Hardcover
R4,406
Discovery Miles 44 060
Handbook of Multimedia Information…
Amit Kumar Singh, Anand Mohan
Hardcover
R6,633
Discovery Miles 66 330
Agile Scrum Implementation and Its…
Kenneth R Walsh, Sathiadev Mahesh, …
Hardcover
R5,994
Discovery Miles 59 940
|