![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This book introduces several appearance-based place recognition pipelines based on different mapping techniques for addressing loop-closure detection in mobile platforms with limited computational resources. The motivation behind this book has been the prospect that in many contemporary applications efficient methods are needed that can provide high performance under run-time and memory constraints. Thus, three different mapping techniques for addressing the task of place recognition for simultaneous localization and mapping (SLAM) are presented. The book at hand follows a tutorial-based structure describing each of the main parts needed for a loop-closure detection pipeline to facilitate the newcomers. It mainly goes through a historical review of the problem, focusing on how it was addressed during the years reaching the current age. This way, the reader is initially familiarized with each part while the place recognition paradigms follow.
It is my ambition in writing this book to bring tribology to the study of control of machines with friction. Tribology, from the greek for study of rubbing, is the discipline that concerns itself with friction, wear and lubrication. Tribology spans a great range of disciplines, from surface physics to lubrication chemistry and engineering, and comprises investigators in diverse specialities. The English language tribology literature now grows at a rate of some 700 articles per year. But for all of this activity, in the three years that I have been concerned with the control of machines with friction, I have but once met a fellow controls engineer who was aware that the field existed, this including many who were concerned with friction. In this vein I must confess that, before undertaking these investigations, I too was unaware that an active discipline of friction existed. The experience stands out as a mark of the specialization of our time. Within tribology, experimental and theoretical understanding of friction in lubricated machines is well developed. The controls engineer's interest is in dynamics, which is not the central interest of the tribologist. The tribologist is more often concerned with wear, with respect to which there has been enormous progress - witness the many mechanisms which we buy today that are lubricated once only, and that at the factory. Though a secondary interest, frictional dynamics are note forgotten by tribology.
This pioneering book describes the development of a robot mapping and navigation system inspired by models of the neural mechanisms underlying spatial navigation in the rodent hippocampus. Computational models of animal navigation systems have traditionally had limited performance when implemented on robots. This is the first research to test existing models of rodent spatial mapping and navigation on robots in large, challenging, real world environments.
Reset Control Systems addresses the analysis for reset control treating both its basic form, and some useful variations of the reset action and reset condition. The issues regarding reset control - concepts and motivation; analysis tools; and the application of design methodologies to real-world examples - are given thorough coverage. The text opens with a historical perspective which moves from the seminal work of the Clegg integrator and Horowitz FORE to more recent approaches based on impulsive/hybrid control systems and explains the motivation for reset compensation. Preliminary material is also included. The focus then turns to stability analysis for systems using techniques which account for various time- and frequency-domain criteria. The final section of the book is centered on control systems design and application. The PI+CI compensator is detailed as are a proposed frequency domain approach using quantitative feedback theory and ideas for design improvement. Design examples are given.
This book presents the most recent research advances in the theory, design, control and application of robotic systems, which are intended for a variety of purposes such as manipulation, manufacturing, automation, surgery, locomotion and biomechanics. The issues addressed are fundamentally kinematic in nature, including synthesis, calibration, redundancy, force control, dexterity, inverse and forward kinematics, kinematic singularities, as well as over-constrained systems. Methods used include line geometry, quaternion algebra, screw algebra, and linear algebra. These methods are applied to both parallel and serial multi-degree-of-freedom systems. The results should interest researchers, teachers and students, in fields of engineering and mathematics related to robot theory, design, control and application. All articles in the book were reported at the seventh international symposium on Advances in Robot Kinematics that was organised in June 2000 in the beautiful ancient Mediterranean town of Piran in Slovenia. The preceding symposia of the series took place in Ljubljana (1988), Linz (1990), Ferrara (1992), Ljubljana (1994), and Piran (1996), and Salzburg (1998).
Interleaving Planning and Execution for Autonomous Robots develops a formal representation for interleaving planning and execution in the context of incomplete information. This work bridges the gap between theory and practice in robotics by presenting control architectures that are provably sound, complete and optimal, and then describing real-world implementations of these robot architectures. Dervish, winner of the 1994 AAAI National Robot Contest, is one of the robots featured. Interleaving Planning and Execution for Autonomous Robots is based on the author's PhD research, covering the same material taught in CS 224, the very popular Introduction to Robot Programming Laboratory taught at Stanford for four years by Professor Michael Genesereth and the author.
Autonomous manipulation is a challenge in robotic technologies. It refers to the capability of a mobile robot system with one or more manipulators that performs intervention tasks requiring physical contacts in unstructured environments and without continuous human supervision. Achieving autonomous manipulation capability is a quantum leap in robotic technologies as it is currently beyond the state of the art in robotics. This book addresses issues with the complexity of the problems encountered in autonomous manipulation including representation and modeling of robotic structures, kinematic and dynamic robotic control, kinematic and algorithmic singularity avoidance, dynamic task priority, workspace optimization and environment perception. Further development in autonomous manipulation should be able to provide robust improvements of the solutions for all of the above issues. The book provides an extensive tract on sensory-based autonomous manipulation for intervention tasks in unstructured environments. After presenting the theoretical foundations for kinematic and dynamic modelling as well as task-priority based kinematic control of multi-body systems, the work is focused on one of the most advanced underwater vehicle-manipulator system, SAUVIM (Semi-Autonomous Underwater Vehicle for Intervention Missions). Solutions to the problem of target identification and localization are proposed, a number of significant case studies are discussed and practical examples and experimental/simulation results are presented. The book may inspire the robot research community to further investigate critical issues in autonomous manipulation and to develop robot systems that can profoundly impact our society for the better."
This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smart elastic structures - the generalization of flatness-based trajectory planning and feedforward control to parabolic and biharmonic PDE systems defined on general higher-dimensional domains - an extension of the backstepping approach to the feedback control and observer design for parabolic PDEs with parallelepiped domain and spatially and time varying parameters - the development of design techniques to realize exponentially stabilizing tracking control - the evaluation in simulations and experiments Control of Higher-Dimensional PDEs - Flatness and Backstepping Designs is an advanced research monograph for graduate students in applied mathematics, control theory, and related fields. The book may serve as a reference to recent developments for researchers and control engineers interested in the analysis and control of systems governed by PDEs.
This book describes the practical application of artificial intelligence (AI) methods using time series data in system control. This book consistently discusses the application of machine learning to the analysis and modelling of time series data of physical quantities to be controlled in the field of system control. Since dynamic systems are not stable steady states but changing transient states, the changing transient states depend on the state history before the change. In other words, it is essential to predict the change from the present to the future based on the time history of each variable in the target system, and to manipulate the system to achieve the desired change. In short, time series is the key to the application of AI machine learning to system control. This is the philosophy of this book: "time series data" + "AI machine learning" = "new practical control methods". This book can give my helps to undergradate or graduate students, institute researchers and senior engineers whose scientific background are engineering, mathematics, physics and other natural sciences.
The area of hybrid dynamical systems (HDS) represents a difficult and exciting challenge to control engineers and is referred to as "the control theory of tomorrow" because of its future potential for solving problems. This relatively new discipline bridges control engineering, mathematics, and computer science. There is now an emerging literature on this topic describing a number of mathematical models, heuristic algorithms, and stability criteria. However, presently there is no systematic theory of HDS. "Hybrid Dynamical Systems" focuses on a comprehensive development of HDS theory and integrates results established by the authors. The work is a self-contained informative text/reference, covering several theoretically interesting and practically significant problems concerning the use of switched controllers and examining the sensor scheduling problem. The emphasis is on classes of uncertain systems as models for HDS. Features and topics: * Focuses on the design of robust HDS in a logical and clear manner * Applies the hybrid control systems framework to two classical robust control problems: design of an optimal stable controller for a linear system and simultaneous stabilization of a collection of plants * Presents a detailed treatment of stability and H-infinity control problems for a class of HDS * Covers recent original results with complete mathematically rigorous proofs Researchers and postgraduate students in control engineering, applied mathematics, and theoretical computer science will find this book covers the latest results on this important area of research. Advanced engineering practitioners and applied researchers working in areas of controlengineering, signal processing, communications, and fault detection will find this book an up-to-date resource.
This book tackles the problem of overshoot and undershoot in blood glucose levels caused by delay in the effects of carbohydrate consumption and insulin administration. The ideas presented here will be very important in maintaining the welfare of insulin-dependent diabetics and avoiding the damaging effects of unpredicted swings in blood glucose - accurate prediction enables the implementation of counter-measures. The glucose prediction algorithms described are also a key and critical ingredient of automated insulin delivery systems, the so-called "artificial pancreas". The authors address the topic of blood-glucose prediction from medical, scientific and technological points of view. Simulation studies are utilized for complementary analysis but the primary focus of this book is on real applications, using clinical data from diabetic subjects. The text details the current state of the art by surveying prediction algorithms, and then moves beyond it with the most recent advances in data-based modeling of glucose metabolism. The topic of performance evaluation is discussed and the relationship of clinical and technological needs and goals examined with regard to their implications for medical devices employing prediction algorithms. Practical and theoretical questions associated with such devices and their solutions are highlighted. This book shows researchers interested in biomedical device technology and control researchers working with predictive algorithms how incorporation of predictive algorithms into the next generation of portable glucose measurement can make treatment of diabetes safer and more efficient.
Brain and Behavior Computing offers insights into the functions of the human brain. This book provides an emphasis on brain and behavior computing with different modalities available such as signal processing, image processing, data sciences, statistics further it includes fundamental, mathematical model, algorithms, case studies, and future research scopes. It further illustrates brain signal sources and how the brain signal can process, manipulate, and transform in different domains allowing researchers and professionals to extract information about the physiological condition of the brain. Emphasizes real challenges in brain signal processing for a variety of applications for analysis, classification, and clustering. Discusses data sciences and its applications in brain computing visualization. Covers all the most recent tools for analysing the brain and it's working. Describes brain modeling and all possible machine learning methods and their uses. Augments the use of data mining and machine learning to brain computer interface (BCI) devices. Includes case studies and actual simulation examples. This book is aimed at researchers, professionals, and graduate students in image processing and computer vision, biomedical engineering, signal processing, and brain and behavior computing.
Dead-Reckoning aided with Doppler velocity measurement has been the most common method for underwater navigation for small vehicles. Unfortunately DR requires frequent position recalibrations and underwater vehicle navigation systems are limited to periodic position update when they surface. Finally standard Global Positioning System (GPS) receivers are unable to provide the rate or precision required when used on a small vessel. To overcome this, a low cost high rate motion measurement system for an Unmanned Surface Vehicle (USV) with underwater and oceanographic purposes is proposed. The proposed onboard system for the USV consists of an Inertial Measurement Unit (IMU) with accelerometers and rate gyros, a GPS receiver, a flux-gate compass, a roll and tilt sensor and an ADCP. Interfacing all the sensors proved rather challenging because of their different characteristics. The proposed data fusion technique integrates the sensors and develops an embeddable software package, using real time data fusion methods, for a USV to aid in navigation and control as well as controlling an onboard Acoustic Doppler Current Profiler (ADCP). While ADCPs non-intrusively measure water flow, the vessel motion needs to be removed to analyze the data and the system developed provides the motion measurements and processing to accomplish this task.
The book focuses on analysis and design for positive stochastic jump systems. By using multiple linear co-positive Lyapunov function method and linear programming technique, a basic theoretical framework is formed toward the issues of analysis and design for positive stochastic jump systems. This is achieved by providing an in-depth study on several major topics such as stability, time delay, finite-time control, observer design, filter design, and fault detection for positive stochastic jump systems. The comprehensive and systematic treatment of positive systems is one of the major features of the book, which is particularly suited for readers who are interested to learn non-negative theory. By reading this book, the reader can obtain the most advanced analysis and design techniques for positive stochastic jump systems.
Thiseditedbookispublishedin honorofDr. GeorgeJ. Vachtsevanos, ourDr. V, c- rently Professor Emeritus, School of Electrical and Computer Engineering, Georgia Institute of Technology, on the occasion of his 70th birthday and for his more than 30 years of contribution to the discipline of Intelligent Control and its application to a wide spectrum of engineering and bioengineering systems. The book is nothing but a very small token of appreciation from Dr. V's former graduate students, his peers and colleagues in the profession - and not only - to the Scientist, the Engineer, the Professor, the mentor, but most important of all, to the friend and human being. All those who have met Dr. V over the years and haveinteractedwith himin someprofessionaland/orsocial capacityunderstandthis statement: Georgenevermadeanybodyfeelinferiortohim, hehelpedandsupported everybody, and he was there when anybody needed him I was not Dr. V's student. I rst met him and his wife Athena more than 26 years ago during one of their visits to RPI, in the house of my late advisor, Dr. George N. Saridis. Since then, I have been very fortunate to have had and continue to have interactions with him. It is not an exaggeration if I say that we all learned a lot from him.
The world of artificial systems is reaching hitherto undreamed-of levels of complexity. Surface traffic, electricity distribution, mobile communications, etc., demonstrate that problems are arising that are beyond classical scientific or engineering knowledge. In order that our ability to control such systems should not be hindered by lack of comprehension, there is an on-going effort to understand them.This book is an example of the types of approach that European researchers are using to tackle problems derived from systems' complexity. It has grown out of activities in the Control of Complex Systems (COSY) research program the goals of which are to promote multi-disciplinary activity leading to a deeper understanding and further development of control technologies for complex systems and if possible, to develop the theory underlying such systems. The material in this book represents a selection of the results of the COSY program and is organised as a collection of essays of varying nature: surveys of essential areas, discussion of specific problems, case studies, and benchmark problems.Topics covered include:Modelling complex physical systems;Passivity-based control of non-linear systems;Aspects of fault identification and fault tolerance;Control design;Learning control;Satellite attitude control.Complex systems appear in many different fields and for this reason this book should be of interest to scientists, researchers and industrial engineers with a broad spectrum of experience.
This book presents lectures given at the 8th International Workshop on Spoken Dialog Systems. As agents evolve in terms of their ability to carry on a dialog with users, several qualities are emerging as essential components of a successful system. Users do not carry on long conversations on only one topic-they tend to switch between several topics. Thus the authors are observing the emergence of multi-domain systems that enable users to seamlessly hop from one domain to another. The systems have become active social partners. Accordingly, work on social dialog has become crucial to active and engaging human-robot/agent interaction. These new systems call for a coherent framework that guides their actions as chatbots and conversational agents. Human-Robot/Agent assessment mechanisms naturally lend themselves to this task. As these systems increasingly assist humans in a multitude of tasks, the ethics of their existence, their design and their interaction with users are becoming crucial issues. This book discusses the essential players and features involved, such as chat-based agents, multi-domain dialog systems, human-robot interaction, social dialog policy, and advanced dialog system architectures.
The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.
Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine "Nanorobotics and nanodiagnostics" can be defined as a new generation of biohybrid and nanorobotics that translate fundamental biological principles into engineering design rules, or integrative living components into synthetic structures to create biorobots and nanodiagnotics that perform like natural systems. Nanorobots or nanobots are structured of a nanoscale made of individual assemblies. They can be termed as intelligent systems manufactured with self-assembly strategies by chemical, physical and biological approaches. The nanorobot can determine the structure and enhance the adaptability to the environment in interdisciplinary tasks. "Nanorobotics and nanodiagnostics" is a new generation of biohybrid that translates fundamental biological principles into engineering design rules to create biorobots that perform like natural systems. These biorobotics and diagnostics can now perform various missions to be accomplished certain tasks in the research areas such as integrative biology and biomedicine. "Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine" sheds light on a comprehensive overview of the multidisciplinary areas that explore nanotherapeutics and nanorobotic manipulation in biology and medicine. It provides up-to-date knowledge of the promising fields of integrative biology and biomedicine for nano-assisted biorobotics and diagnostics to detect and treat diseases that will enable new scientific discoveries.
The controller area network (CAN) microcontroller communication protocol is now ubiquitous in a staggeringly wide range of transportation and industrial control applications. This fully revised and updated new edition addresses the various challenges and open questions relating to CAN communication networks. Opening with a short introduction into the fundamentals of CAN, the book then examines the problems and solutions for the physical layout of networks, including EMC issues and topology layout. Additionally, a discussion of quality issues with a particular focus on test techniques is presented. Each chapter features a collection of illuminating insights and detailed technical information supplied by a selection of internationally-regarded experts from industry and academia. Topics and features: presents thorough coverage of architectures, implementations and application of CAN transceiver, data link layer and so-called higher layer software; explains CAN EMC characteristics and countermeasures, as well as how to design CAN networks; demonstrates how to practically apply and test CAN systems; includes examples of real networks from diverse applications in automotive engineering, avionics, and home heating technology; includes a glossary of abbreviations, and a useful bibliography. This comprehensive text will be an invaluable guide/reference for electronic engineers working with industrial control systems.
Computational kinematics is an enthralling area of science with a rich spectrum of problems at the junction of mechanics, robotics, computer science, mathematics, and computer graphics. The covered topics include design and optimization of cable-driven robots, analysis of parallel manipulators, motion planning, numerical methods for mechanism calibration and optimization, geometric approaches to mechanism analysis and design, synthesis of mechanisms, kinematical issues in biomechanics, construction of novel mechanical devices, as well as detection and treatment of singularities. The results should be of interest for practicing and research
engineers as well as Ph.D. students from the fields of mechanical
and electrical engineering, computer science, and computer
graphics.
Metrology is part of the essential but largely hidden infrastructure of the modern world. This book concentrates on the infrastructure aspects of metrology. It introduces the underlying concepts: International system of units, traceability and uncertainty; and describes the concepts that are implemented to assure the comparability, reliability and quantifiable trust of measurement results. It is shown what benefits the traditional metrological principles have in fields as medicine or in the evaluation of cyber physical systems.
This monograph is focused on control law design methods for asymptotic tracking and disturbance rejection in the presence of uncertainties. The methods are based on adaptive implementation of the Internal Model Principle (IMP). The monograph shows how this principle can be applied to the problems of asymptotic rejection/tracking of a priori uncertain exogenous signals for linear and nonlinear plants with known and unknown parameters. The book begins by introducing the problems of adaptive control, the challenges that are faced, modern methods and an overview of the IMP. It then introduces special observers for uncertain exogeneous signals affecting linear and nonlinear systems with known and unknown parameters. The basic algorithms of adaptation applied to the canonical closed-loop error models are presented. The authors then address the systematic design of adaptive systems for asymptotic rejection/tracking of a priori uncertain exosignals. The monograph also discusses the adaptive rejection/tracking of a priori uncertain exogenous signals in systems with input delay, the problems of performance improvement in disturbance rejection and reference tracking and the issue of robustness of closed-loop systems. Adaptive Regulation provides a systematic discussion of the IMP applied to a variety of control problems, making it of interest to researchers and industrial practitioners.
Research and development of various parallel mechanism applications in engineering are now being performed more and more actively in every industrial field. Parallel robot based machine tools development is considered a key technology of robot applications in manufacturing industries. The material covered here describes the basic theory, approaches, and algorithms in the field of parallel robot based machine tools. In addition families of new alternative mechanical architectures which can be used for machine tools with parallel architecture are introduced. Given equal importance is the design of mechanism systems such as kinematic analysis, stiffness analysis, kinetostatic modeling, and optimization. |
You may like...
|