![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Recognising the benefits of improved control, the second edition of Autotuning of PID Controllers provides simple yet effective methods for improving PID controller performance. The practical issues of controller tuning are examined using numerous worked examples and case studies in association with specially written autotuning MATLABA(R) programs to bridge the gap between conventional tuning practice and novel autotuning methods. The extensively revised second edition expands and refines on important work in the ubiquitous PID form of control with material covering:
Autotuning of PID Controllers is more than just a monograph, it is an independent learning tool applicable to the work of academic control engineers and of their counterparts in industry looking for more effective process control and automation. Comments on the first edition: This book is written in a way which not only makes it easy to
understand but is also useful to those interested in or working
with PID controllers. The book will be useful to manufacturers and users of control
equipment, and also to researchers in the field of automatic
tuning.
This book provides insight and enhanced appreciation of analysis, modeling and control of dynamic systems. The reader is assumed to be familiar with calculus, physics and some programming skills. It might develop the reader's ability to interpret physical significance of mathematical results in system analysis. The book also prepares the reader for more advanced treatment of subsequent knowledge in the automatic control field. Learning objectives are performance-oriented, using for this purpose interactive MATLAB and SIMULINK software tools. It presents realistic problems in order to analyze, design and develop automatic control systems. Learning with computing tools can aid theory and help students to think, analyze and reason in meaningful ways. The book is also complemented with classroom slides and MATLAB and SIMULINK exercise files to aid students to focus on fundamental concepts treated.
The atomic force microscope (AFM) has been successfully used to perform nanorobotic manipulation operations on nanoscale entities such as particles, nanotubes, nanowires, nanocrystals, and DNA since 1990s. There have been many progress on modeling, imaging, teleoperated or automated control, human-machine interfacing, instrumentation, and applications of AFM based nanorobotic manipulation systems in literature. This book aims to include all of such state-of-the-art progress in an organized, structured, and detailed manner as a reference book and also potentially a textbook in nanorobotics and any other nanoscale dynamics, systems and controls related research and education. Clearly written and well-organized, this text introduces designs and prototypes of the nanorobotic systems in detail with innovative principles of three-dimensional manipulation force microscopy and parallel imaging/manipulation force microscopy.
One of the key concerns in modern control theory is the design of steering strategies. The implementation of such strategies is done by a regulator. Presented here is a self-contained introduction to the mathematical background of this type of regulator design. The topics selected address the matter of greatest interest to the control community, at present, namely, when the design objective is the reduction of the influence of exogeneous disturbances upon the output of the system. In a first scenario the disturbance signal is regarded as a deterministic time series with known dynamics but unknown parameters. The design objective is then the asymptotic disturbance compensation. In a second scenario, no information about the disturbance signal is available apart from some bounds. Here, in an H-approach, control strategies are worked out which will prove efficient for all such disturbances. The intention of this book is to present ideas and methods on such a level that the beginning graduate student will be able to follow current research. New results are included, especially for nonlinear control systems, and as a service to the reader, an extensive appendix presents topics from linear algebra, invariant manifolds and calculus of variations, information which is hardly to be found in standard textbooks. Contents: Introduction * The problem of output regulation * Introduction * Problem statement * Output regulation via full information * Output regulation via full error feedback * A particular case * Well-posedness and robustness * The construction of a robust regulator * Disturbance attenuation via H-methods * Introduction * Problem statement * A characterization of the L2-gain of a linear system * Disturbance attenuation via full information * Disturbance attenuation via measured feedback * Full information regulators * Problem statement * Time-dependent control strategies * Examples * Time-independent control strategies * The local case * Nonlinear observers * Problem statement * Time-dependent observers * Error feedback regulators * Examples * Nonlinear H-techniques * Introduction * Construction of the saddle-point * The local scenario * Disturbance attenuation via linearization * Matrix equations * Linear matrix equations * Algebraic Riccati equations * Invariant manifolds * Existence theorem * Outflowing manifolds * Asymptotic phase * Convergence for T (1) * A special case * Dichotomies and Lyapunov functions * Hamilton-Jacobi-Bellman-Isaacs equation * Introduction * Method of characteristics * The equation of Isaacs * The Hamiltonian version of Isaacs' equation * Bibliography
This book collects a number of important contributions presented during the Second Conference on Interdisciplinary Applications of Kinematics (IAK 2013) held in Lima, Peru. The conference brought together scientists from several research fields, such as computational kinematics, multibody systems, industrial machines, robotics, biomechanics, mechatronics, computational chemistry, and vibration analysis, and embraced all key aspects of kinematics, namely, theoretical methods, modeling, optimization, experimental validation, industrial applications, and design. Kinematics is an exciting area of computational mechanics and plays a central role in a great variety of fields and industrial applications nowadays. Apart from research in pure kinematics, the field deals with problems of practical relevance that need to be solved in an interdisciplinary manner in order for new technologies to develop. The results presented in this book should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics.
At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition organizes cutting-edge contributions from more than 200 leading experts. The second volume, Control System Applications, includes 35 entirely new applications organized by subject area. Covering the design and use of control systems, this volume includes applications for: Automobiles, including PEM fuel cells Aerospace Industrial control of machines and processes Biomedical uses, including robotic surgery and drug discovery and development Electronics and communication networks Other applications are included in a section that reflects the multidisciplinary nature of control system work. These include applications for the construction of financial portfolios, earthquake response control for civil structures, quantum estimation and control, and the modeling and control of air conditioning and refrigeration systems. As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances. Progressively organized, the other two volumes in the set include: Control System Fundamentals Control System Advanced Methods
Digitally Assisted Pipeline ADCs: Theory and Implementation
explores the opportunity to reduce ADC power dissipation by
leveraging digital signal processing capabilities in fine line
integrated circuit technology. The described digitally assisted
pipelined ADC uses a statistics-based system identification
technique as an enabling element to replace precision residue
amplifiers with simple open-loop gain stages. The digital
compensation of analog circuit distortion eliminates one key factor
in the classical noise-speed-linearity constraint loop and thereby
enables a significant power reduction.
Features * Offers a hands-on tutorial on interactive dynamic-system modeling and simulation * Includes examples from physics, aerospace engineering, population dynamics, and physiology * Contains hints for selecting integration rules and step size * Provides a complete, industrial-strength simulation program package on an accompanying CD-ROM New to This Edition * Introduces a new vectorizing compiler for fast vector operations and parameter-influence studies * Incorporates a new treatment of the difference equation programs for modeling sampled-data control systems with digital controllers * Presents improved versions of several classical simulation programs to illustrate useful programming tricks Summary Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author integrates a new treatment of the difference equation programs needed to model sampled-data control systems with digital controllers. Subsequent chapters provide detailed programming know-how. These chapters cover library, table-lookup, user-definable, limiter, switching, and noise functions; an experiment-protocol scripting language; powerful vector and matrix operations; and classical simulation programs that illustrate a number of useful programming tricks. The final chapter shows how experiment-protocol scripts and compiled DYNAMIC program segments can quickly solve mathematical problems, including fast graph plotting, Fourier transforms
A recent development in SDC-related problems is the establishment of intelligent SDC models and the intensive use of LMI-based convex optimization methods. Within this theoretical framework, control parameter determination can be designed and stability and robustness of closed-loop systems can be analyzed. This book describes the new framework of SDC system design and provides a comprehensive description of the modelling of controller design tools and their real-time implementation. It starts with a review of current research on SDC and moves on to some basic techniques for modelling and controller design of SDC systems. This is followed by a description of controller design for fixed-control-structure SDC systems, PDF control for general input- and output-represented systems, filtering designs, and fault detection and diagnosis (FDD) for SDC systems. Many new LMI techniques being developed for SDC systems are shown to have independent theoretical significance for robust control and FDD problems.
The first Workshop on Mechanisms, Transmissions and Applications -- MeTrApp-2011 was organized by the Mechatronics Department at the Mechanical Engineering Faculty, "Politehnica" University of Timisoara, Romania, under the patronage of the IFToMM Technical Committees Linkages and Mechanical Controls and Micromachines. The workshop brought together researchers and students who work in disciplines associated with mechanisms science and offered a great opportunity for scientists from all over the world to present their achievements, exchange innovative ideas and create solid international links, setting the trend for future developments in this important and creative field. The topics treated in this volume are mechanisms and machine design, mechanical transmissions, mechatronic and biomechanic applications, computational and experimental methods, history of mechanism and machine science and teaching methods.
The problem of robotic and virtual interaction with physical objects has been the subject of research for many years in both the robotic manipulation and haptics communities. Both communities have focused much attention on human touch-based perception and manipulation, modelling contact between real or virtual hands and objects, or mechanism design. However, as a whole, these problems have not yet been addressed from a unified perspective. This edited book is the outcome of a well-attended workshop which brought together leading scholars from various branches of the robotics, virtual-reality, and human studies communities during the 2004 IEEE International Conference on Robotics and Automation. It covers some of the most challenging problems on the forefront of today 's research on physical interaction with real and virtual objects, with special emphasis on modelling contacts between objects, grasp planning algorithms, haptic perception, and advanced design of hands, devices and interfaces.
The physical processes which initiate and maintain motion have been a major concern of serious investigation throughout the evolution of scientific thought. As early as the fifth century B. C. questions regarding motion were presented as touchstones for the most fundamental concepts about existence. Such wide ranging philosophical issues are beyond the scope of this book, however, consider the paradox of the flying arrow attri buted to Zeno of Elea: An arrow is shot from point A to point B requiring a sequence of time instants to traverse the distance. Now, for any time instant, T, of the sequence the arrow is at a position, Pi' and at Ti+! the i arrow is at Pi+i> with Pi ::I-P+* Clearly, each Ti must be a singular time i 1 unit at which the arrow is at rest at Pi because if the arrow were moving during Ti there would be a further sequence, Til' of time instants required for the arrow to traverse the smaller distance. Now, regardless of the level to which this recursive argument is applied, one is left with the flight of the arrow comprising a sequence of positions at which the arrow is at rest. The original intent of presenting this paradox has been interpreted to be as an argument against the possibility of individuated objects moving in space.
This book reflects the current industrial interest and investment in process control systems. The use of computer systems in process control can provide great benefits, and it is estimated that efficiency can be increased by up to 30%. It is not surprising, therefore, that there have been considerable efforts by system designers and users to introduce and use such systems. Process hardware is integrated into a complete production system through data processing. It is for this purpose that technical specialists (eg electrical, mechanical, electronics, communication and process engineers and programmers) are involved in data processing. The scope of this book is therefore to assist in the selction of computer hardware and software that match the functional specification of the data processing component of a particular system.
This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.
The purpose of this monograph is to give the broad aspects of nonlinear identification and control using neural networks. It consists of three parts:- an introduction to the fundamental principles of neural networks;- several methods for nonlinear identification using neural networks;- various techniques for nonlinear control using neural networks.A number of simulated and industrial examples are used throughout the monograph to demonstrate the operation of nonlinear identification and control techniques using neural networks. It should be emphasised that the methods and systems of nonlinear control have not progressed as rapidly as those for linear control. Comparatively speaking, at the present time, they are still in the development stage. We believe that the fundamental theory, various design methods and techniques, and several applications of nonlinear identification and control using neural networks that are presented in this monograph will enable the reader to analyse and synthesise nonlinear control systems quantitatively.
With businesses becoming ever more competitive, marketing strategies need to be more precise and performance oriented. Companies are investing considerably in analytical infrastructure for marketing. This new volume, Marketing Analytics: A Machine Learning Approach, enlightens readers on the application of analytics in marketing and the process of analytics, providing a foundation on the concepts and algorithms of machine learning and statistics. The book simplifies analytics for businesses and explains its uses in different aspects of marketing in a way that even marketers with no prior analytics experience will find it easy to follow, giving them to tools to make better business decisions. This volume gives a comprehensive overview of marketing analytics, incorporating machine learning methods of data analysis that automates analytical model building. The volume covers the important aspects of marketing analytics, including segmentation and targeting analysis, statistics for marketing, marketing metrics, consumer buying behavior, neuromarketing techniques for consumer analytics, new product development, forecasting sales and price, web and social media analytics, and much more. This well-organized and straight-forward volume will be valuable for marketers, managers, decision makers, and research scholars, and faculty in business marketing and information technology and would also be suitable for classroom use.
The book presents the modeling and control of hydrogen-air PEM fuel cells, including simultaneous estimation of the parameters and states, fuzzy cluster modeling, SPM-based predictive control and advanced fuzzy control. MATLAB/Simulink-based modeling and control programs are discussed in detail. With simulations and experiments, it is an essential reference for both scientists and industrial engineers.
Control Theory is at the heart of information and communication technologies of complex systems. It can contribute to meeting the energy and environmental challenges we are facing. The textbook is organized in the way an engineer classically proceeds to solve a control problem, that is, elaboration of a mathematical model capturing the process behavior, analysis of this model and design of a control to achieve the desired objectives. It is divided into three Parts. The first part of the text addresses modeling aspects through state space and input-output representations. The notion of the internal state of a system (for example mechanical, thermal or electrical), as well as its description using a finite number of variables, is also emphasized. The second part is devoted to the stability analysis of an equilibrium point. The authors present classical tools for stability analysis, such as linearization techniques and Lyapunov functions. Central to Control Theory are the notions of feedback and of closed-loop, and the third part of the textbook describes the linear control synthesis in a continuous and discrete-time framework and also in a probabilistic context. Quadratic optimization and Kalman filtering are presented, as well as the polynomial representation, a convenient approach to reject perturbations on the system without making the control law more complex. Throughout the text, different examples are developed, both in the chapters and in the exercises.
This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The book presents a series of application examples to confirm the efficiency of the proposed nonlinear filtering and adaptive control schemes for various electromechanical systems. These include: * industrial robots; * mobile robots and autonomous vehicles; * electric power generation; * electric motors and actuators; * power electronics;* internal combustion engines; * distributed-parameter systems; and * communication systems. Differential Flatness Approaches to Nonlinear Control and Filtering will be a useful reference for academic researchers studying advanced problems in nonlinear control and nonlinear dynamics, and for engineers working on control applications in electromechanical systems.
"Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation" can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems-the first step on the long way to the more elaborate study of multi-degree-of-freedom systems-using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic computations as well as a Solutions Manual for instructors, with complete solutions of a sample of end-of-chapter exercises Chapters 3 and 7, on simulation, include in each "Exercises" section a set of miniprojects that require code-writing to implement the algorithms developed in these chapters
Computer vision-based crack-like object detection has many useful applications, such as pavement surface inspection, underground pipeline inspection, bridge cracking monitoring, railway track assessment, etc. However, in most contexts, cracks appear as thin, irregular long-narrow objects, and often are buried into complex, textured background with high diversity which make the crack detection very challenging. During the past a few years, the deep learning technique has achieved great success and has been utilized for solving a variety of object detection problems. However, using deep learning for accurate crack localization is non-trivial. This book discusses crack-like object detection problem in a comprehensive way. It starts by discussing traditional image processing approaches for solving this problem, and then introduces deep learning-based methods. The book provides a comprehensive review of object detection problems and focuses on the most challenging problem, crack-like object detection, to dig deep into the deep learning method. It includes examples of real-world problems, which are easy to understand and could be a good tutorial for introducing computer vision and machine learning.
This volume contains revised and extended research articles written by prominent researchers participating in the ICF4C 2011 conference. 2011 International Conference on Future Communication, Computing, Control and Management (ICF4C 2011) has been held on December 16-17, 2011, Phuket, Thailand. Topics covered include intelligent computing, network management, wireless networks, telecommunication, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Computing, Communication, Control, and Management and also serve as an excellent reference work for researchers and graduate students working on Computing, Communication, Control, and Management Research.
In the past decade a critical mass of work that uses fuzzy logic for autonomous vehicle navigation has been reported. Unfortunately, reports of this work are scattered among conference, workshop, and journal publications that belong to different research communities (fuzzy logic, robotics, artificial intelligence, intelligent control) and it is therefore not easily accessible either to the new comer or to the specialist. As a result, researchers in this area may end up reinventing things while being unaware of important existing work. We believe that research and applications based on fuzzy logic in the field of autonomous vehicle navigation have now reached a sufficient level of maturity, and that it should be suitably reported to the largest possible group of interested practitioners, researches, and students. On these grounds, we have endeavored to collect some of the most representative pieces of work in one volume to be used as a reference. Our aim was to provide a volume which is more than "yet another random collection of papers," and gives the reader some added value with respect to the individual papers. In order to achieve this goal we have aimed at: * Selecting contributions which are representative of a wide range of prob lems and solutions and which have been validated on real robots; and * Setting the individual contributions in a clear framework, that identifies the main problems of autonomous robotics for which solutions based on fuzzy logic have been proposed.
Robot intelligence has become a major focus of intelligent robotics. Recent innovation in computational intelligence including fuzzy learning, neural networks, evolutionary computation and classical Artificial Intelligence provides sufficient theoretical and experimental foundations for enabling robots to undertake a variety of tasks with reasonable performance. This book reflects the recent advances in the field from an advanced knowledge processing perspective; there have been attempts to solve knowledge based information explosion constraints by integrating computational intelligence in the robotics context.
Hopping, climbing and swimming robots, nano-size neural networks, motorless walkers, slime mould and chemical brains - "Artificial Life Models in Hardware" offers unique designs and prototypes of life-like creatures in conventional hardware and hybrid bio-silicon systems. Ideas and implementations of living phenomena in non-living substrates cast a colourful picture of state-of-art advances in hardware models of artificial life. |
You may like...
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Fault Detection, Supervision and Safety…
J. Chen, R.J. Patton
Paperback
R6,901
Discovery Miles 69 010
Design and Control Advances in Robotics
Mohamed Arezk Mellal
Hardcover
R7,594
Discovery Miles 75 940
|