![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Making Robots Smarter is a book about learning robots. It treats this topic based on the idea that the integration of sensing and action is the central issue. In the first part of the book, aspects of learning in execution and control are discussed. Methods for the automatic synthesis of controllers, for active sensing, for learning to enhance assembly, and for learning sensor-based navigation are presented. Since robots are not isolated but should serve us, the second part of the book discusses learning for human-robot interaction. Methods of learning understandable concepts for assembly, monitoring, and navigation are described as well as optimizing the implementation of such understandable concepts for a robot's real-time performance. In terms of the study of embodied intelligence, Making Robots Smarter asks how skills are acquired and where capabilities of execution and control come from. Can they be learned from examples or experience? What is the role of communication in the learning procedure? Whether we name it one way or the other, the methodological challenge is that of integrating learning capabilities into robots.
Well-written, practice-oriented textbook, and compact textbook Presents the contemporary state of the art of control theory and its applications Introduces traditional problems that are useful in the automatic control of technical processes, plus presents current issues of control Explains methods can be easily applied for the determination of the decision algorithms in computer control and management systems
Vision-based mobile robot guidance has proved difficult for classical machine vision methods because of the diversity and real-time constraints inherent in the task. This book describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task. But real world problems like vision-based mobile robot guidance present a different set of challenges for the connectionist paradigm. Among them are: how to develop a general representation from a limited amount of real training data; how to understand the internal representations developed by artificial neural networks; how to estimate the reliability of individual networks; how to combine multiple networks trained for different situations into a single system; how to combine connectionist perception with symbolic reasoning. Neural Network Perception for Mobile Robot Guidance presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive. Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi-lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot.
The present book includes a set of selected papers from the seventh "International Conference on Informatics in Control Automation and Robotics" (ICINCO 2010), held in Madeira, Portugal, from 15 to 18 June 2010. The conference was organized in three simultaneous tracks: "Intelligent Control Systems and Optimization", "Robotics and Automation" and "Signal Processing, Systems Modeling and Control". The book is based on the same structure. ICINCO received 320 paper submissions, not including those of workshops or special sessions, from 57 countries, in all continents. After a double blind paper review performed by the Program Committee only 27 submissions were accepted as full papers and thus selected for oral presentation, leading to a full paper acceptance ratio of 8%. Additional papers were accepted as short papers and posters. A further refinement was made after the conference, based also on the assessment of presentation quality, so that this book includes the extended and revised versions of the very best papers of ICINCO 2010. Commitment to high quality standards is a major concern of ICINCO that will be maintained in the next editions of this conference, including not only the stringent paper acceptance ratios but also the quality of the program committee, keynote lectures, workshops and logistics.
A common sense of time among all the elements of a distributed measurement and control system allows the use of new techniques for the solution of problems with complex synchronization requirements or arising from the interaction of many sensors and actuators. Such a common sense of time may be accomplished using IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems (IEEE 1588-2002) to synchronize real-time clocks incorporated within each component of the system. IEEE 1588, published in November 2002, is a technology new to the engineering community expanding the performance capabilities of Ethernet networks so that they become relevant for measurement and control; this monograph embodies the first unified treatment of the associated technology, standards and applications. Readers unfamiliar with IEEE 1588 will gain understanding of the context of the technology it represents and, from three chapters of case studies, its role in a variety of application settings. To engineers implementing synchronization within their systems Measurement, Control, and Communication Using IEEE 1588 provides detailed discussion of the complex features of the standard. Together with the essential material on best practice and critical implementation issues, these provide invaluable assistance in the design of new applications.
The International Symposia on Distributed Autonomous Robotic Systems (DARS) started at Riken, Japan in 1992. Since then, the DARS symposia have been held every two years: in 1994 and 1996 in Japan (Riken, Wako), in 1998 in Germany (Karlsruhe), in 2000 in the USA (Knoxville, TN), in 2002 in Japan (Fukuoka), in 2004 in France (Toulouse), and in 2006 in the USA (Minneapolis, MN). The 9th DARS symposium, which was held during November 17-19 in T- kuba, Japan, hosted 84 participants from 13 countries. The 48 papers presented there were selected through rigorous peer review with a 50% acceptance ratio. Along with three invited talks, they addressed the spreading research fields of DARS, which are classifiable along two streams: theoretical and standard studies of DARS, and interdisciplinary studies using DARS concepts. The former stream includes multi-robot cooperation (task assignment methodology among multiple robots, multi-robot localization, etc.), swarm intelligence, and modular robots. The latter includes distributed sensing, mobiligence, ambient intelligence, and mul- agent systems interaction with human beings. This book not only offers readers the latest research results related to DARS from theoretical studies to application-oriented ones; it also describes the present trends of this field. With the diversity and depth revealed herein, we expect that DARS technologies will flourish soon.
"Proceedings of the First Symposium on Aviation Maintenance and Management "collects selected papers from the conference of ISAMM 2013 in China held in Xi'an on November 25-28, 2013. The book presents state-of-the-art studies on the aviation maintenance, test, fault diagnosis, and prognosis for the aircraft electronic and electrical systems. The selected works can help promote the development of the maintenance and test technology for the aircraft complex systems. Researchers and engineers in the fields of electrical engineering and aerospace engineering can benefit from the book. Jinsong Wang is a professor at School of Mechanical and Electronic Engineering of Northwestern Polytechnical University, China.
This thesis introduces novel and significant results regarding the analysis and synthesis of positive systems, especially under l1 and L1 performance. It describes stability analysis, controller synthesis, and bounding positivity-preserving observer and filtering design for a variety of both discrete and continuous positive systems. It subsequently derives computationally efficient solutions based on linear programming in terms of matrix inequalities, as well as a number of analytical solutions obtained for special cases. The thesis applies a range of novel approaches and fundamental techniques to the further study of positive systems, thus contributing significantly to the theory of positive systems, a "hot topic" in the field of control.
Here is a comprehensive presentation of methodology for the design and synthesis of an intelligent complex robotic system, connecting formal tools from discrete system theory, artificial intelligence, neural network, and fuzzy logic. The necessary methods for solving real time action planning, coordination and control problems are described. A notable chapter presents a new approach to intelligent robotic agent control acting in a realworld environment based on a lifelong learning approach combining cognitive and reactive capabilities. Another key feature is the homogeneous description of all solutions and methods based on system theory formalism.
This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.
This volume describes new frontiers in medical and service robotics in the light of recent developments in technology to advance robot design and implementation. In particular, the work looks at advances in design, development and implementation of contemporary surgical, rehabilitation and biorobots. Surgical robots allow surgeons greater access to areas under operation using more precise and less invasive methods. Rehabilitation robots facilitate and support the lives of the infirm, elderly people, or those with dysfunction of body parts affecting movement. These robots are also used for rehabilitation and related procedures, such as training and therapy. Biorobots are designed to imitate the cognition of humans and animals. The need to substitute humans working on delicate, tiresome and monotonous tasks, or working with potentially health-damaging toxic materials, requires intelligent, high-performance service robots with the ability to cooperate, advanced communication and sophisticated perception and cognitive capabilities. Progress in this field is fast and results need to be disseminated to stimulate both practical applications and further research. Thus, these papers are a valuable addition to existing literature.
The human hand and its dexterity in grasping and manipulating objects are some of the hallmarks of the human species. For years, anatomic and biomechanical studies have deepened the understanding of the human hand's functioning and, in parallel, the robotics community has been working on the design of robotic hands capable of manipulating objects with a performance similar to that of the human hand. However, although many researchers have partially studied various aspects, to date there has been no comprehensive characterization of the human hand's function for grasping and manipulation of everyday life objects. This monograph explores the hypothesis that the confluence of both scientific fields, the biomechanical study of the human hand and the analysis of robotic manipulation of objects, would greatly benefit and advance both disciplines through simulation. Therefore, in this book, the current knowledge of robotics and biomechanics guides the design and implementation of a simulation framework focused on manipulation interactions that allows the study of the grasp through simulation. As a result, a valuable framework for the study of the grasp, with relevant applications in several fields such as robotics, biomechanics, ergonomics, rehabilitation and medicine, has been made available to these communities.
Stabilization, Optimal and Robust Control develops robust control of infinite-dimensional dynamical systems derived from time-dependent coupled PDEs associated with boundary-value problems. Rigorous analysis takes into account nonlinear system dynamics, evolutionary and coupled PDE behaviour and the selection of function spaces in terms of solvability and model quality. Mathematical foundations are provided so that the book remains accessible to the non-control-specialist. Following chapters giving a general view of convex analysis and optimization and robust and optimal control, problems arising in fluid mechanical, biological and materials scientific systems are laid out in detail. The combination of mathematical fundamentals with application of current interest will make this book of much interest to researchers and graduate students looking at complex problems in mathematics, physics and biology as well as to control theorists.
This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage.
Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as hardware of Multi-Locomotion Robotic system. It is useful for students and researchers in the field of robotics in general, bio-inspired robots, multi-modal locomotion, legged walking, motion control, and humanoid robots. Furthermore, it is also of interest for lecturers and engineers in practice building systems cooperating with humans.
The idea of optimization runs through most parts of control theory. The simplest optimal controls are preplanned (programmed) ones. The problem of constructing optimal preplanned controls has been extensively worked out in literature (see, e. g., the Pontrjagin maximum principle giving necessary conditions of preplanned control optimality). However, the concept of op timality itself has a restrictive character: it is limited by what one means under optimality in each separate case. The internal contradictoriness of the preplanned control optimality ("the better is the enemy of the good") yields that the practical significance of optimal preplanned controls proves to be not great: such controls are usually sensitive to unregistered disturbances (includ ing the round-off errors which are inevitable when computer devices are used for forming controls), as there is the effect of disturbance accumulation in the control process which makes controls to be of little use on large time inter vals. This gap is mainly provoked by oversimplified settings of optimization problems. The outstanding result of control theory established in the end of the first half of our century is that controls in feedback form ensure the weak sensitivity of closed loop systems with respect to "small" unregistered internal and external disturbances acting in them (here we do not need to discuss performance indexes, since the considered phenomenon is of general nature). But by far not all optimal preplanned controls can be represented in a feedback form."
This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the "real world" system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework. Illustrates various systems level methodologies with examples and applications drawn from aerospace, electrical and mechanical engineering. Provides connections between lyapunov-based matrix approach and the transfer function based polynomial approaches. Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach is an ideal book for first year graduate students taking a course in robust control in aerospace, mechanical, or electrical engineering.
This book deals with the class of singular systems with random abrupt changes also known as singular Markovian jump systems. Various problems and their robustness are tackled. The book examines both the theoretical and practical aspects of the control problems from the angle of the structural properties of linear systems. It can be used as a textbook as well as a reference for researchers in control or mathematics with interest in control theory.
This book presents the concept of cognition in a clear, lucid and highly comprehensive style. It provides an in-depth analysis of mathematical models and algorithms, and demonstrates their application with real life experiments.
This book presents research on informational and mathematical aspects of networked sensing systems. It brings together internationally reputed researchers from different communities, focused on the common theme of distributed sensing, inferencing, and control over networks. The timeliness of the book is evidenced by the explosion of several independent special sessions devoted to specific aspects of sensor networks in reputed international conferences.
This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, because integer-order PID regulators are, undoubtedly, the controllers most frequently adopted in industry. The second part of the book deals with a more general approach to fractional control systems, extending techniques (such as H-infinity optimal control and optimal input-output inversion based control) originally devised for classical integer-order control. Advances in Robust Fractional Control will be a useful reference for the large number of academic researchers in fractional control, for their industrial counterparts and for graduate students who want to learn more about this subject.
This book presents the latest results on predictive control of networked systems, where communication constraints (e.g., network-induced delays and packet dropouts) and cyber attacks (e.g., deception attacks and denial-of-service attacks) are considered. For the former, it proposes several networked predictive control (NPC) methods based on input-output models and state-space models respectively. For the latter, it designs secure NPC schemes from the perspectives of information security and real-time control. Furthermore, it uses practical experiments to demonstrate the effectiveness and applicability of all the methods, bridging the gap between control theory and practical applications. The book is of interest to academic researchers, R&D engineers, and graduate students in control engineering, networked control systems and cyber-physical systems.
The research book is focused on the recent advances in computer vision methodologies and innovations in practice. The Contributions include: * Human Action Recognition: Contour-Based and Silhouette-based Approaches. * The Application of Machine Learning Techniques to Real Time Audience Analysis System. * Panorama Construction from Multi-view Cameras in Outdoor Scenes. * A New Real-Time Method of Contextual Image Description and Its Application in Robot Navigation and Intelligent Control. * Perception of Audio Visual Information for Mobile Robot Motion Control Systems. * Adaptive Surveillance Algorithms Based on the Situation Analysis. * Enhanced, Synthetic and Combined Vision Technologies for Civil Aviation. * Navigation of Autonomous Underwater Vehicles Using Acoustic and Visual Data Processing. * Efficient Denoising Algorithms for Intelligent Recognition Systems. * Image Segmentation Based on Two-dimensional Markov Chains. The book is directed to the PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.
Digital Twins for Healthcare: Design, Challenges and Solutions establishes the state-of-art in the specification, design, creation, deployment and exploitation of digital twins' technologies for healthcare and wellbeing. A digital twin is a digital replication of a living or non-living physical entity. When data is transmitted seamlessly, it bridges the physical and virtual worlds, thus allowing the virtual entity to exist simultaneously with the physical entity. A digital twin facilitates the means to understand, monitor, and optimize the functions of the physical entity and provide continuous feedback. It can be used to improve citizens' quality of life and wellbeing in smart cities and the virtualization of industrial processes. |
You may like...
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Artificial Intelligence in Real-Time…
Y.-H. Pao, S.R. LeClair
Paperback
R2,020
Discovery Miles 20 200
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
|