![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This thesis presents a novel neuro-fuzzy modeling approach for grasp neuroprostheses. At first, it offers a detailed study of discomfort due to the application of Functional Electrical Stimulation to the upper limb. Then, it discusses briefly previous methods to model hand movements induced by FES with the purpose of introducing the new modeling approach based on intelligent systems. This approach is thoroughly described in the book, together with the proposed application to induce hand and finger movements by means of a surface FES system based on multi-field electrodes. The validation tests, carried out on both healthy and neurologically impaired subjects, demonstrate the efficacy of the proposed modeling method. All in all, the book proposes an innovative system based on fuzzy neural networks that is expected to improve the design and validation of advanced control systems for non-invasive grasp neuroprostheses.
This monograph has arisen from the multidisciplinary research extending over biology, robotics and hybrid systems theory. It is inspired by modeling reactive behavior of the immune system cell population, where each cell is considered an independent agent. The authors formulate the optimal control of maximizing the probability of robotic presence in a given region and discuss the application of the Minimum Principle for partial differential equations to this problem.
This book will help researchers and engineers in the design of ethical systems for robots, addressing the philosophical questions that arise and exploring modern applications such as assistive robots and self-driving cars. The contributing authors are among the leading academic and industrial researchers on this topic and the book will be of value to researchers, graduate students and practitioners engaged with robot design, artificial intelligence and ethics.
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive and truck engines is inherently related to unsteady conditions. In fact, only a very small portion of a vehicle's operating pattern is true steady-state, e. g. , when cruising on a motorway. Moreover, the most critical conditions encountered by industrial or marine engines are met during transients too. Unfortunately, the transient operation of turbocharged diesel engines has been associated with slow acceleration rate, hence poor driveability, and overshoot in particulate, gaseous and noise emissions. Despite the relatively large number of published papers, this very important subject has been treated in the past scarcely and only segmentally as regards reference books. Merely two chapters, one in the book Turbocharging the Internal Combustion Engine by N. Watson and M. S. Janota (McMillan Press, 1982) and another one written by D. E. Winterbone in the book The Thermodynamics and Gas Dynamics of Internal Combustion Engines, Vol. II edited by J. H. Horlock and D. E. Winterbone (Clarendon Press, 1986) are dedicated to transient operation. Both books, now out of print, were published a long time ago. Then, it seems reasonable to try to expand on these pioneering works, taking into account the recent technological advances and particularly the global concern about environmental pollution, which has intensified the research on transient (diesel) engine operation, typically through the Transient Cycles certification of new vehicles.
Societies survive in their environment and compete with each other depending on the technology they develop. Economic, military and political power are directly related to the available technology, while access to technology is key to the well-being of our societies at the individual, community and national level. The Robotics Divide analyzes how robotics will shape our societies in the twenty-first century; a time when industrial and service robotics, particularly for military and aerospace purposes, will become an essential technology. The book, written by experts in the field, focuses on the main technological trends in the field of robotics, and the impact that robotics will have on different facets of social life. By doing so, the authors aim to open the "black box" of a technology which, like any other, is designed, implemented and evaluated according to the economic and cultural patterns of a cosmopolitan society, as well as its relations of power. The Robotics Divide explores future developments in robotics technology and discusses the model of technological development and the implementation of robotics in this competitive market economy. Then the authors examine to what extent it is possible to determine the characteristic features of the robotic divide, namely in what ways the robotic divide differs from the digital divide, and how a model to integrate this technology can be developed without reproducing patterns of inequality and power that have characterized the advent of previous technologies. These issues - inequality, robotics and power - are of concern to robotics and advanced automation engineers, social scientists, economists and science policy experts alike.
This book compares four parameters of problems in arbitrary information systems: complexity of problem representation and complexity of deterministic, nondeterministic, and strongly nondeterministic decision trees for problem solving. Deterministic decision trees are widely used as classifiers, as a means of knowledge representation, and as algorithms. Nondeterministic (strongly nondeterministic) decision trees can be interpreted as systems of true decision rules that cover all objects (objects from one decision class). This book develops tools for the study of decision trees, including bounds on complexity and algorithms for construction of decision trees for decision tables with many-valued decisions. It considers two approaches to the investigation of decision trees for problems in information systems: local, when decision trees can use only attributes from the problem representation; and global, when decision trees can use arbitrary attributes from the information system. For both approaches, it describes all possible types of relationships among the four parameters considered and discusses the algorithmic problems related to decision tree optimization. The results presented are useful for researchers who apply decision trees and rules to algorithm design and to data analysis, especially those working in rough set theory, test theory and logical analysis of data. This book can also be used as the basis for graduate courses.
TheThird International Workshop on Multi-Robot Systems was held in March 2005 at the Naval Research Laboratory in Washington, D. C. , USA. Bringing together leading researchers and government sponsors for three days of technicalinterchange on multi-robot systems, theworkshop follows two previous highly successful gatherings in 2002 and 2003. Likethe previous two workshops, the meeting began with presentations byvarious government p- gram managers describing application areas and programs with an interest in multi-robot systems. U. S. Government representatives were on handfrom theOf?ce of Naval Research and several other governmental of?ces. Top - searchers inthe ?eld then presented their current activities in many areas of multi-robot systems. Presentations spannedawide rangeof topics, incl- ing task allocation, coordination in dynamicenvironments, information/sensor sharing andfusion, distributed mapping and coverage, motion planning and control, human-robot interaction, and applications of multi-robot systems. All presentations were given in a single-track workshop format. This proce- ings documents the work presented at the workshop. The research presen- tions were followed by panel discussions, in which all participants interacted to highlight the challenges of this ?eld and to develop possible solutions. In addition to the invited research talks, researchers and students were given an opportunity to present their work at poster sessions. We would like to thank the Naval Research Laboratory for sponsoring this workshop and providing the - cilitiesforthesemeetingstotakeplace. WeareextremelygratefultoMagdalena Bugajska, Paul Wiegand, and Mitchell A. Potter, for their vital help (and long hours) in editing these proceedings and to Michelle Caccivio for providing the administrative support to the workshop.
Supervision, condition-monitoring, fault detection, fault diagnosis and fault management play an increasing role for technical processes and vehicles in order to improve reliability, availability, maintenance and lifetime. For safety-related processes fault-tolerant systems with redundancy are required in order to reach comprehensive system integrity. This book is a sequel of the book Fault-Diagnosis Systems published in 2006, where the basic methods were described. After a short introduction into fault-detection and fault-diagnosis methods the book shows how these methods can be applied for a selection of 20 real technical components and processes as examples, such as: Electrical drives (DC, AC) Electrical actuators Fluidic actuators (hydraulic, pneumatic) Centrifugal and reciprocating pumps Pipelines (leak detection) Industrial robots Machine tools (main and feed drive, drilling, milling, grinding) Heat exchangers Also realized fault-tolerant systems for electrical drives, actuators and sensors are presented. The book describes why and how the various signal-model-based and process-model-based methods were applied and which experimental results could be achieved. In several cases a combination of different methods was most successful. The book is dedicated to graduate students of electrical, mechanical, chemical engineering and computer science and for engineers.
This book focuses on the intelligent control design for both the induction motor (IM) and the permanent magnet synchronous motor (PMSM). Compared with traditional control schemes, such as the field-oriented control (FOC) and the direct torque control (DTC), the intelligent controllers designed in this book could overcome the influence of parameter uncertainty and load torque disturbance. This book is a research monograph, which provides valuable reference material for researchers who wish to explore the area of AC motor. In addition, the main contents of the book are also suitable for a one-semester graduate course.
A proceedings volume from the 6th IFAC International Conference, Puebla, Mexico, 14-25 November 2005
Written by leading international experts, this volume presents contributions establishing the feasibility of human language-like communication with robots. The book explores the use of language games for structuring situated dialogues in which contextualized language communication and language acquisition can take place. Within the text are integrated experiments demonstrating the extensive research which targets artificial language evolution. Language Grounding in Robots uses the design layers necessary to create a fully operational communicating robot as a framework for the text, focusing on the following areas: Embodiment; Behavior; Perception and Action; Conceptualization; Language Processing; Whole Systems Experiments. This book serves as an excellent reference for researchers interested in further study of artificial language evolution.
This book is focused on the recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The Contributions include: * Morphological Image Analysis for Computer Vision Applications. * Methods for Detecting of Structural Changes in Computer Vision Systems. * Hierarchical Adaptive KL-based Transform: Algorithms and Applications. * Automatic Estimation for Parameters of Image Projective Transforms Based on Object-invariant Cores. * A Way of Energy Analysis for Image and Video Sequence Processing. * Optimal Measurement of Visual Motion Across Spatial and Temporal Scales. * Scene Analysis Using Morphological Mathematics and Fuzzy Logic. * Digital Video Stabilization in Static and Dynamic Scenes. * Implementation of Hadamard Matrices for Image Processing. * A Generalized Criterion of Efficiency for Telecommunication Systems. The book is directed to PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.
This is a book for engineers that covers the hardware and software
aspects of high-reliability safety systems, safety instrumentation
and shutdown systems as well as risk assessment techniques and the
wider spectrum of industrial safety. Rather than another book on
the discipline of safety engineering, this is a thoroughly
practical guide to the procedures and technology of safety in
control and plant engineering. This highly practical book focuses
on efficiently implementing and assessing hazard studies, designing
and applying international safety practices and techniques, and
ensuring high reliability in the safety and emergency shutdown of
systems in your plant.
Over the last thirty years an abundance of papers have been writ ten on adaptive dynamic control systems. Nevertheless, now it may be predicted with confidence that the adaptive mechanics, a new division, new line of inquiry in one of the violently developing fields of cybernetic mechanics, is emerging. The birth process falls far short of being com pleted. There appear new problems and methods of their solution in the framework of adaptive nonlinear dynamics. Therefore, the present work cannot be treated as a certain polished, brought-to-perfection school textbook. More likely, this is an attempt to show a number of well known scientific results in the parametric synthesis of nonlinear systems (this, strictly speaking, accounts for the availability of many reviews), as well as to bring to notice author's developments on this question undoubtedly modern and topical. The nonlinear, and practically La grangian, systems cover a wide class of classical objects in theoretical mechanics, and primarily solid-body (robotic, gyroscopic, rocket-cosmic, and other) systems. And what is rather important, they have a direct trend to practical application. To indicate this discussion, I should like to notice that it does not touch upon the questions concerned with the linear and stochastic con trolobjects. Investigated are only nonlinear deterministic systems being in the conditions when some system parameters are either unknown or beyond the reach of measurement, or they execute an unknown limited and fairly smooth drift in time."
Over the past decade a new approach has been introduced to the theory of systems representations. Introduced by Jan C. Willems, it is called the "behavioural" approach. One of its main features is that it is well suited for modelling interconnections of systems. In this book, the author develops representation theory from a behavioural point of view and focuses on various types of ("generalized state space") first-order representations that commonly arise in the process of modelling. It covers minimality, derives transformation groups and offers realization methods that lead directly to minimal realizations. The book further presents generalized notions of controllability indices and observability indices and gives methods to calculate these indices. The book includes a procedure to derive a standard state space description from a general first-order representation. It fortifies the reader's understanding with basic examples from electrical networks and mechanics. Mathematicians and control engineers doing research on systems that are linear, time-invariant, deterministic, and finite dimensional should find this book a firm basis for understanding both the theory and applications of this behavioural approach.
This book aims at addressing the challenges of contemporary manufacturing in Industry 4.0 environment and future manufacturing (aka Industry 5.0), by implementing soft computing as one of the major sub-fields of artificial intelligence. It contributes to development and application of the soft computing systems, including links to hardware, software and enterprise systems, in resolving modern manufacturing issues in complex, highly dynamic and globalized industrial circumstances. It embraces heterogeneous complementary aspects, such as control, monitoring and modeling of different manufacturing tasks, including intelligent robotic systems and processes, addressed by various machine learning and fuzzy techniques; modeling and parametric optimization of advanced conventional and non-conventional, eco-friendly manufacturing processes by using machine learning and evolutionary computing techniques; cybersecurity framework for Internet of Things-based systems addressing trustworthiness and resilience in machine-to-machine and human-machine collaboration; static and dynamic digital twins integration and synchronization in a smart factory environment; STEP-NC technology for a smart machine vision system, and integration of Open CNC with Service-Oriented Architecture for STEP-NC monitoring system in a smart manufacturing. Areas of interest include but are not limited to applications of soft computing to address the following: dynamic process/system modeling and simulation, dynamic process/system parametric optimization, dynamic planning and scheduling, smart, predictive maintenance, intelligent and autonomous systems, improved machine cognition, effective digital twins integration, human-machine collaboration, robots, and cobots.
This book contains the papers included in the proceedings of the 1st International Workshop on High-speed and Intercity Railways (IWHIR 2011) held in Shenzhen and Hong Kong, China from July 19 to July 22, 2011, which is organized by The Hong Kong Polytechnic University, in collaboration with Southwest Jiaotong University, Beijing Jiaotong University, Dalian Jiaotong University, China Engineering Consultants, Inc., Zhejiang University, and Tsinghua University. Continuing the great initiatives and momentums of the rapid development in high-speed and intercity railways worldwide in recent years, IWHIR 2011 aims at providing a platform for academic scholars and practicing engineers to share knowledge and experience, to promote collaboration, and to strengthen R&D activities related to railway engineering. Engineers, scientists, professors, and students from universities, research institutes, and related industrial companies have been cordially invited to participate in the workshop. These papers have covered a wide range of issues concerning high-speed and intercity railways in the theoretical, numerical, and experimental work pertaining to high-speed and intercity railways. Showcasing diversity and quality, these papers report the state-of-the-art and point to future directions of research and development in this exciting area.
In 1998 the chairman of the Russian National Committee of TMM Professor Arcady Bessonov, recommended one of authors of this book to be come a member of the IFToMM Permanent Commission on the History of Mechanisms and Machines Sciences (PC HMMS). Willy-nilly from this time the history of technique, as hobby passed on to a serious the employment in the history of engineering science. Interest history of a subject is natural for Professor, a leading a course of Theory of Mechanisms and Machines in Bauman University. This interest is supported by the fact that Bauman University is one of the oldest technical universities in Russia, and the course "Applied Mechanics" - later "Theory of Mechanisms and Machines" was the first systematic course in Russia. The second author supervises a cycle of laboratory works on TMM. Models of mechanisms are placed in laboratory in show-windows of ancient cases quite possibly coevals of the first course. He became interested in contents of these cases: firstly in models, and then in their origin. Later he occupied himself with the creation of a web-site "The Collection of mechanisms in department TMM in Bauman University". Gradually both authors had the idea of cooperation, although several years previously, we could not imagine this happening. We took an active part in the work of PC HMMS from 2000. It was promoted by of chairman of the commission Professor Marco Ceccarelli.
The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of -mean square stability is proposed such that the stability problem can be solved via a finite number of conditions. The systems involved with nonlinear dynamics (described via the Takagi-Sugeno fuzzy model) are also investigated. Numerical and practical examples are given to verify the effectiveness of the obtained theoretical results. Finally, some perspectives and future works are presented to conclude the book.
This book presents the most recent research advances in the theory, design, control, and application of robotic systems, which are intended for a variety of purposes such as manipulation, manufacturing, automation, surgery, locomotion, and biomechanics.
This book collects papers presented at the International Conference on Mathematical Modelling and Computational Intelligence Techniques (ICMMCIT) 2021, held at the Department of Mathematics, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, India, from 10-12 February 2021. Significant contributions from renowned researchers from fields of applied analysis, mathematical modelling and computing techniques have been received for this conference. Chapters emphasize on the research of computational nature focusing on new algorithms, their analysis and numerical results, as well as applications in physical, biological, social, and behavioural sciences. The accepted papers are organized in topical sections as mathematical modelling, image processing, control theory, graphs and networks, and inventory control.
This book presents the latest information on the intelligent CNC machine tool spindle system, which integrates various disciplines such as mechanical engineering, control engineering, computer science and information technology. It describes a prediction method and model for temperature rise and thermal deformation in motorized spindles and proposes an intelligent stator resistance identification method to reduce the torque ripple of motorized spindles under direct torque control. Further, it discusses the on-line dynamic balance method for NC machine tool spindles. The biogeographic optimization algorithm and hybrid intelligent algorithm presented here were first applied in the field of motorized spindle performance control. In turn, the book presents extensive motorized spindle performance test data and includes detailed examples of how intelligent algorithms can be applied to motor spindle stator resistance identification, temperature field prediction and on-line dynamic balance. In summary, the book provides readers with the latest tools for designing, testing and implementing intelligent motorized spindle systems in terms of the basic theory, technological applications and future prospects, and offers a wealth of practical information for researchers in mechanical engineering, especially in the area of control systems.
This textbook offers a comprehensive introduction to the control of marine vehicles, from fundamental to advanced concepts, including robust control techniques for handling model uncertainty, environmental disturbances, and actuator limitations. Starting with an introductory chapter that extensively reviews automatic control and dynamic modeling techniques for ocean vehicles, the first part of the book presents in-depth information on the analysis and control of linear time invariant systems. The concepts discussed are developed progressively, providing a basis for understanding more complex techniques and stimulating readers' intuition. In addition, selected examples illustrating the main concepts, the corresponding MATLAB (R) code, and problems are included in each chapter. In turn, the second part of the book offers comprehensive coverage on the stability and control of nonlinear systems. Following the same intuitive approach, it guides readers from the fundamentals to more advanced techniques, which culminate in integrator backstepping, adaptive and sliding mode control. Leveraging the author's considerable teaching and research experience, the book offers a good balance of theory and stimulating questions. Not only does it provide a valuable resource for undergraduate and graduate students; it will also benefit practitioners who want to review the foundational concepts underpinning some of the latest advanced marine vehicle control techniques, for use in their own applications.
ILC has been a major control design methodology for twenty years; numerous algorithms have been developed to solve real-time control problems, from MEMS to batch reactors, characterised by repetitive control operations. Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The authors provide a hitherto lacking systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in the linear and nonlinear plants that pervade mechatronics and batch processes are addressed. In particular, the book discusses: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space. Real-time Iterative Learning Control will interest control engineers looking for examples of how this important control technique can be applied to a variety of real-life problems. With its systematic formulation and analysis of different system properties and performance and its exposition of open problems, academics and graduate students working in control will find it a useful reference to the current status of ILC.
This proceeding book consists of 10 topical areas of selected papers like: telecommunication, power systems, robotics, control system, renewable energy, power electronics, computer science and more. All selected papers represent interesting ideas and state of the art overview. Readers will find interesting papers of those areas about design and implement of dynamic positioning control system for USV, scheduling problems, motor control, backtracking search algorithm for distribution network and others. All selected papers represent interesting ideas and state of art overview. The proceeding book will also be a resource and material for practitioners who want to apply discussed problems to solve real-life problems in their challenging applications. It is also devoted to the studies of common and related subjects in intensive research fields of modern electric, electronic and related technologies. For these reasons, we believe that this proceeding book will be useful for scientists and engineers working in the above-mentioned fields of research applications. |
![]() ![]() You may like...
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,415
Discovery Miles 34 150
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R4,145
Discovery Miles 41 450
|