![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Energy exchange is a major foundation of the dynamics of physical systems, and, hence, in the study of complex multi-domain systems, methodologies that explicitly describe the topology of energy exchanges are instrumental in structuring the modeling and the computation of the system's dynamics and its control. This book is the outcome of the European Project "Geoplex" (FP5 IST-2001-34166) that studied and extended such system modeling and control methodologies. This unique book starts from the basic concept of port-based modeling, and extends it to port-Hamiltonian systems. This generic paradigm is applied to various physical domains, showing its power and unifying flexibility for real multi-domain systems.
Case Studies in Control presents a framework to facilitate the use of advanced control concepts in real systems based on two decades of research and over 150 successful applications for industrial end-users from various backgrounds. In successive parts the text approaches the problem of putting the theory to work from both ends, theoretical and practical. The first part begins with a stress on solid control theory and the shaping of that theory to solve particular instances of practical problems. It emphasizes the need to establish by experiment whether a model-derived solution will perform properly in reality. The second part focuses on real industrial applications based on the needs and requirements of end-users. Here, the engineering approach is dominant but with theoretical input of varying degree depending on the particular process involved. Following the illustrations of the progress that can be made from either extreme of the well-known theory-practice divide, the text proceeds to a third part related to the development of tools that enable simpler use of advanced methods, a need only partially met by available commercial products. Each case study represents a self-contained unit that shows an experimental application of a particular method, a practical solution to an industrial problem or a toolkit that makes control design and implementation easier or more efficient. Among the applications presented are: wastewater treatment; manufacturing of electrical motors ; temperature control of blow moulding; burn-protective garments quality assessment; and rapid prototyping. Written by contributors with a considerable record of industrially-applied research, Case Studies in Control will encourage interaction between industrial practitioners and academic researchers and be of benefit to both, helping to make theory realistic and practical implementation more thorough and efficacious. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on the maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Three case studies are included in the book: * a control strategy for a micro-hybrid power train; * experimental results obtained with a real-time strategy implemented in a hybrid electric truck; and * an analysis of the optimal component sizes for a hybrid power train. Optimal Control of Hybrid Vehicles will appeal to academic researchers and graduate students interested in hybrid vehicle control or in the applications of optimal control. Practitioners working in the design of control systems for the automotive industry will also find the ideas propounded in this book of interest.
This research monograph presents selected areas of applications in the field of control systems engineering using computational intelligence methodologies. A number of applications and case studies are introduced. These methodologies are increasing used in many applications of our daily lives. Approaches include, fuzzy-neural multi model for decentralized identification, model predictive control based on time dependent recurrent neural network development of cognitive systems, developments in the field of Intelligent Multiple Models based Adaptive Switching Control, designing military training simulators using modelling, simulation, and analysis for operational analyses and training, methods for modelling of systems based on the application of Gaussian processes, computational intelligence techniques for process control and image segmentation technique based on modified particle swarm optimized-fuzzy entropy.
Various general techniques have been developed for control and systems problems, many of which involve indirect methods. Because these indirect methods are not always effective, alternative approaches using direct methods are of particular interest and relevance given the advances of computing in recent years.The focus of this book, unique in the literature, is on direct methods, which are concerned with finding actual solutions to problems in control and systems, often algorithmic in nature. Throughout the work, deterministic and stochastic problems are examined from a unified perspective and with considerable rigor. Emphasis is placed on the theoretical basis of the methods and their potential utility in a broad range of control and systems problems.The book is an excellent reference for graduate students, researchers, applied mathematicians, and control engineers and may be used as a textbook for a graduate course or seminar on direct methods in control.
Model-Based Control will be a collection of state-of-the-art contributions in the field of modelling, identification, robust control and optimization of dynamical systems, with particular attention to the application domains of motion control systems (high-accuracy positioning systems) and large scale industrial process control systems.The book will be directed to academic and industrial people involved in research in systems and control, industrial process control and mechatronics.
In a world suffering from an ageing population and declining birth rate, service robotics and mechatronics have an increasingly vital role to play in maintaining a safe and sustainable environment for everyone. Mechatronics can be used in the reconstruction or restoration of various environments which we rely upon to survive; for example the reconstruction of a city after an earthquake, or the restoration of polluted waters This collection of papers was originally presented at the 7th International Conference on Machine Automation, 2008, in Awaji, Japan, and covers a variety of new trends in service robotics and mechatronics. Service Robotics and Mechatronics showcases the latest research in the area to provide researchers and scientists with an up-to-date source of knowledge and basis for further study, as well as offering graduate students valuable reference material.
This book includes selected peer-reviewed papers presented at the International Conference on Modeling, Simulation and Optimization, organized by National Institute of Technology, Silchar, Assam, India, during 3-5 August 2020. The book covers topics of modeling, simulation and optimization, including computational modeling and simulation, system modeling and simulation, device/VLSI modeling and simulation, control theory and applications, modeling and simulation of energy system and optimization. The book disseminates various models of diverse systems and includes solutions of emerging challenges of diverse scientific fields.
By the dawn of the new millennium, robotics has undergone a major transformation in scope and dimensions. This expansion has been brought about by the maturity of the field and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neuros- ences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field.
This book addresses higher-lower level decision autonomy for autonomous vehicles, and discusses the addition of a novel architecture to cover both levels. The proposed framework's performance and stability are subsequently investigated by employing different meta-heuristic algorithms. The performance of the proposed architecture is shown to be largely independent of the algorithms employed; the use of diverse algorithms (subjected to the real-time performance of the algorithm) does not negatively affect the system's real-time performance. By analyzing the simulation results, the book demonstrates that the proposed model provides perfect mission timing and task management, while also guaranteeing secure deployment. Although mainly intended as a research work, the book's review chapters and the new approaches developed here are also suitable for use in courses for advanced undergraduate or graduate students.
This book is a part of the Proceedings of the Seventh International Symposium on Neural Networks (ISNN 2010), held on June 6-9, 2010 in Shanghai, China. Over the past few years, ISNN has matured into a well-established premier international symposium on neural networks and related fields, with a successful sequence of ISNN series in Dalian (2004), Chongqing (2005), Chengdu (2006), Nanjing (2007), Beijing (2008), and Wuhan (2009). Following the tradition of ISNN series, ISNN 2010 provided a high-level international forum for scientists, engineers, and educators to present the state-of-the-art research in neural networks and related fields, and also discuss the major opportunities and challenges of future neural network research. Over the past decades, the neural network community has witnessed significant breakthroughs and developments from all aspects of neural network research, including theoretical foundations, architectures, and network organizations, modeling and simulation, empirical studies, as well as a wide range of applications across different domains. The recent developments of science and technology, including neuroscience, computer science, cognitive science, nano-technologies and engineering design, among others, has provided significant new understandings and technological solutions to move the neural network research toward the development of complex, large scale, and networked brain-like intelligent systems. This long-term goals can only be achieved with the continuous efforts from the community to seriously investigate various issues on neural networks and related topics.
"Robotic Mapping and Exploration" is an important contribution in the area of simultaneous localization and mapping (SLAM) for autonomous robots, which has been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the autonomous mapping learning problem. Solutions include uncertainty-driven exploration, active loop closing, coordination of multiple robots, learning and incorporating background knowledge, and dealing with dynamic environments. Results are accompanied by a rich set of experiments, revealing a promising outlook toward the application to a wide range of mobile robots and field settings, such as search and rescue, transportation tasks, or automated vacuum cleaning.
After two succesful conferences held in Innsbruck (Prof. Manfred Husty) in 2006 and Cassino in 2008 (Prof Marco Ceccarelli) with the participation of the most important well-known scientists from the European Mechanism Science Community, a further conference was held in Cluj Napoca, Romania, in 2010 (Prof. Doina Pisla) to discuss new developments in the field. This book presents the most recent research advances in Mechanism Science with different applications. Amongst the topics treated are papers on Theoretical kinematics, Computational kinematics, Mechanism design, Mechanical transmissions, Linkages and manipulators, Mechanisms for biomechanics, Micro-mechanisms, Experimental mechanics, Mechanics of robots, Dynamics of multi-body systems, Dynamics of machinery, Control issues of mechanical systems, Novel designs, History of mechanism science etc.
This basic book has been used at the middle schools in Shanghai, China for more than 10 years. The book presents carefully-selected contents in order to achieve the roles of enlightenment and popularization. It mainly includes: Chapter 1: Human Brains, Computers and Fuzzy Mathematics; Chapter 2: Matrix, Fuzzy Relations and Fuzzy Matrix; Chapter 3: Fuzzy Control; Chapter 4: Fuzzy Statistics and Fuzzy Probability and Chapter 5: Fuzzy Linear Programming. It includes at the end of each chapter concise, interesting and profound reading and thinking materials, and a certain amount of exercises so as to make it an informative and interesting textbook. This book can be used not only as a textbook in senior middle schools, and in vocational colleges, but also as a primer for individually learning fuzzy mathematics.
In this book, the capability map, a novel general representation of the kinematic capabilities of a robot arm, is introduced. The capability map allows to determine how well regions of the workspace are reachable for the end effector in different orientations. It is a representation that can be machine processed as well as intuitively visualized for the human. The capability map and the derived algorithms are a valuable source of information for high- and low-level planning processes. The versatile applicability of the capability map is shown by examples from several distinct application domains. In human-robot interaction, a bi-manual interface for tele-operation is objectively evaluated. In low-level geometric planning, more human-like motion is planned for a humanoid robot while also reducing the computation time. And in high-level task reasoning, the suitability of a robot for a task is evaluated.
Hereditary systems (or systems with either delay or after-effects)
are widely used to model processes in physics, mechanics, control,
economics and biology. An important element in their study is their
stability. Stability conditions for difference equations with delay
can be obtained using a Lyapunov functional.
The second volume of this work continues the approach of the first
volume, providing mathematical tools for the control engineer and
examining such topics as random variables and sequences, iterative
logarithmic and large number laws, differential equations,
stochastic measurements and optimization, discrete martingales and
probability space. It includes proofs of all theorems and contains
many examples with solutions.
This book introduces a unique, packet-based co-design control framework for networked control systems. It begins by providing a comprehensive survey of state-of-the-art research on networked control systems, giving readers a general overview of the field. It then verifies the proposed control framework both theoretically and experimentally - the former using multiple control methodologies, and the latter using a unique online test rig for networked control systems. The framework investigates in detail the most common, communication constraints, including network-induced delays, data packet dropout, data packet disorders, and network access constraints, as well as multiple controller design and system analysis tools such as model predictive control, linear matrix inequalities and optimal control. This unique and complete co-design framework greatly benefits researchers, graduate students and engineers in the fields of control theory and engineering.
Next-Generation Actuators Leading Breakthroughs is the proceedings of the final symposium of MEXT Grant-in-Aid for Scientific Research on Priority Areas: Next-Generation Actuators Leading Breakthroughs, held in January 2010. Since the realization of next-generation actuators requires an interdisciplinary approach, the research has been organized according to a broad technological perspective that consists of: actuators for small motion of nano-meters, small-size actuators of micro-meters structures, intelligent actuators for functional motions, power actuators for large force/torque and actuators for special environments. Next-Generation Actuators Leading Breakthroughs also deals with common fundamental technologies for these actuators, such as intelligent materials, machining processes, control technologies, evaluation methods, and system integration. It provides cutting-edge research for researchers, postgraduates, and practitioners in mechanical, electrical, and materials industries.
Viability theory designs and develops mathematical and algorithmic methods for investigating the adaptation to viability constraints of evolutions governed by complex systems under uncertainty that are found in many domains involving living beings, from biological evolution to economics, from environmental sciences to financial markets, from control theory and robotics to cognitive sciences. It involves interdisciplinary investigations spanning fields that have traditionally developed in isolation. The purpose of this book is to present an initiation to applications of viability theory, explaining and motivating the main concepts and illustrating them with numerous numerical examples taken from various fields.
This proceedings presents the papers of the 3rd EAI International Conference on Robotic Sensor Networks (ROSENET 2019). The conference explores the integration of networks and robotic technologies, which has become a topic of increasing interest for both researchers and developers from academic fields and industries worldwide. The authors posit that big networks will be the main approach to the next generation of robotic research, The book discusses how the explosive number of network models and increasing computational power of computers significantly extends the number of potential applications for robotic technologies while also bringing new challenges to each network's community. The conference provided a platform for researchers to share up-to-date scientific achievements in this field. The conference took place August 17, 2019, Kitakyushu, Japan. Presents the proceedings of the 3rd EAI International Conference on Robotic Sensor Networks (ROSENET 2019), August 17, 2019, Kitakyushu, Japan Features papers on robotic technologies for healthcare, medicine, military and more Includes perspectives from a multi-disciplinary selection of global researchers, academics, and professionals
Human computer interaction (HCI) plays a vital role in bridging the 'Digital Divide', bringing people closer to consumer electronics control in the 'lounge'. Keyboards and mouse or remotes do alienate old and new generations alike from control interfaces. Hand Gesture Recognition systems bring hope of connecting people with machines in a natural way. This will lead to consumers being able to use their hands naturally to communicate with any electronic equipment in their 'lounge.' This monograph will include the state of the art hand gesture recognition approaches and how they evolved from their inception. The author would also detail his research in this area for the past 8 years and how the future might turn out to be using HCI. This monograph will serve as a valuable guide for researchers (who would endeavour into) in the world of HCI. |
![]() ![]() You may like...
Advances in Construction Materials and…
Jaganathan Jayaprakash, Kok Keong Choong, …
Hardcover
R6,991
Discovery Miles 69 910
Handbook of Model Predictive Control
Sasa V. Rakovic, William S. Levine
Hardcover
R4,636
Discovery Miles 46 360
Adaptive Control, Filtering, and Signal…
K.J. Astroem, G.C. Goodwin, …
Hardcover
R4,591
Discovery Miles 45 910
Engineering Service Oriented Systems - A…
Bill Karakostas, Yannis Zorgios
Hardcover
R2,866
Discovery Miles 28 660
Intelligent Internet of Things - From…
Farshad Firouzi, Krishnendu Chakrabarty, …
Hardcover
R3,256
Discovery Miles 32 560
|