![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Man is the best thing in the World. Nature does nothing uselessly. Aristotle There is a pleasure in the pathless woods, There is rapture on the lonely shore, There is society, where none intrudes, By the deep sea, and music in its roar: I love not Man the less, but Nature more. John Burroughs The basic purpose of development is to enlarge people's choices. The objective of development is to create an enabling environment for people to enjoy long, healthy and creative lives. Mahbub ul Hag Founder of the Human Development Report Theaimofthisbookis toprovidea compiledset ofconcepts,principles,methods and issues used for studying, designing and operating human-minding and natu- minding automation and industrial systems. The depth of presentation is suf?cient for the reader to understand the problems involved and the solution approaches, and appreciate the need of human-automation cooperative interaction, and the - portance of the efforts required for environment and ecosystem protection during any technological and development process in the society. Humans and technology are living and have to live together in a sustainable society and nature. Humans must not be viewed as components of automation and technology in the same way as machines. Automation and technology must incorporate the humans' needs and preferences, and radiate "beauty" in all ways, namely functionally, technically and humanistically. In overall, automation and technology should create comfort and give pleasure.
The present book includes a set of selected papers from the eighth "International Conference on Informatics in Control Automation and Robotics" (ICINCO 2011), held in Noordwijkerhout, The Netherlands, from 28 to 31 July 2011. The conference was organized in four simultaneous tracks: "Intelligent Control Systems and Optimization", "Robotics and Automation", "Signal Processing, Sensors, Systems Modeling and Control" and "Industrial Engineering, Production and Management". The book is based on the same structure. ICINCO received 322 paper submissions, not including those of workshops or special sessions, from 52 countries, in all continents. After a double blind paper review performed by the Program Committee only 33 submissions were accepted as full papers and thus selected for oral presentation, leading to a full paper acceptance ratio of 10%. Additional papers were accepted as short papers and posters. A further refinement was made after the conference, based also on the assessment of presentation quality, so that this book includes the extended and revised versions of the very best papers of ICINCO 2011. Commitment to high quality standards is a major concern of ICINCO that will be maintained in the next editions of this conference, including not only the stringent paper acceptance ratios but also the quality of the program committee, keynote lectures, workshops and logistics.
During the last decade, many researchers have dedicated their efforts to constructing revolutionary machines and to providing them with forms of artificial intelligence to perform some of the most hazardous, risky or monotonous tasks historically assigned to human beings. Among those machines, mobile robots are undoubtedly at the cutting edge of current research directions. A rough classification of mobile robots can be considered: on the one hand, mobile robots oriented to human-made indoor environments; on the other hand, mobile robots oriented to unstructured outdoor environments, which could include flying oriented robots, space-oriented robots and underwater robots. The most common motion mechanism for surface mobile robots is the wheel-based mechanism, adapted both to flat surfaces, found in human-made environments, and to rough terrain, found in outdoor environments. However, some researchers have reported successful developments with leg-based mobile robots capable of climbing up stairs, although they require further investigation. The research work presented here focuses on wheel-based mobile robots that navigate in human-made indoor environments. The main problems described throughout this book are: Representation and integration of uncertain geometric information by means of the Symmetries and Perturbations Model (SPmodel). This model combines the use of probability theory to represent the imprecision in the location of a geometric element, and the theory of symmetries to represent the partiality due to characteristics of each type of geometric element. A solution to the first location problem, that is, the computation of an estimation for the mobile robot location when the vehicle is completely lost in the environment. The problem is formulated as a search in an interpretation tree using efficient matching algorithms and geometric constraints to reduce the size of the solution space. The book proposes a new probabilistic framework adapted to the problem of simultaneous localization and map building for mobile robots: the Symmetries and Perturbations Map (SPmap). This framework has been experimentally validated by a complete experiment which profited from ground-truth to accurately validate the precision and the appropriateness of the approach. The book emphasizes the generality of the solutions proposed to the different problems and their independence with respect to the exteroceptive sensors mounted on the mobile robot. Theoretical results are complemented by real experiments, where the use of multisensor-based approaches is highlighted.
This compact and original reference and textbook presents the most important classical and modern essentials of control engineering in a single volume. It constitutes a harmonic mixture of control theory and applications, which makes the book especially useful for students, practicing engineers and researchers interested in modeling and control of processes. Well written and easily understandable, it includes a range of methods for the analysis and design of control systems.
Except from the Foreword
Electroactive polymers (EAPs) respond to electrical stimulation with large deformations. They are dynamic actuators which have attracted attention from an interdisciplinary audience of engineers and scientists. An enabling EAP technology is emerging which attempts to imitate the properties of natural muscle and which, as a result, can perform a unique function in a variety of biologically-inspired robotics applications. Electroactive Polymers for Robotics Applications covers the fundamental properties, modelling and demonstration of EAPs in robotic applications, focusing particularly on artificial muscles and sensors. Ionic Polymera "Metal Composite Actuators and Dielectric Elastomers are discussed within the book with chapters on their properties and their uses in robotics applications. With its concentration on devices based on EAPs and their uses, Electroactive Polymers for Robotics Applications will be of interest to researchers working within this field as well as to postgraduate students studying robotics or smart materials and structures. Practitioners working in the mechanical, electrical and materials industries will also find this book of value.
A complete reference to adaptive control of systems with nonsmooth industrial nonlinearities such as:- backlash- dead-zones- component failure- friction- hysteresis- saturation- time delays. These nonlinearities in industrial actuators cause severe problems in the motion control of industrial processes, particularly in view of modern requirements of speed and precision of movement such as occur in semiconductor manufacturing, precision machining, and elsewhere. Actuator nonlinearities are ubiquitous in engineering practice and limit control system performance. While standard feedback control alone cannot handle these nonsmooth nonlinearities effectively, this book, with unified and systematic adaptive design methods developed in 16 chapters, shows how such nonlinear characteristics can be effectively compensated for by using adaptive and intelligent control techniques. This allows desired system performance to be achieved in the presence of uncertain nonlinearities. With extensive surveys of literature and comprehensive summaries of various design methods, the authors of the book chapters, who are experts in their areas of interest, present new solutions to some important issues in adaptive control of systems with various sorts of nonsmooth nonlinearities.In addition to providing solutions, the book is also aimed at motivating more research activities in the important field of adaptive control of nonsmooth nonlinear industrial systems by formulating several challenging open problems in related areas.
DARS is now a well-established conference that gathers every two years the main researchers in Distributed Robotics systems. Even if the field is growing, it has been maintained a one-track conference in order to enforce effective exchanges between the main researchers in the field. It now a well-established tradition to publish the main contributions as a book from Springer. There are already 5 books entitled "Distributed Autonomous Robotic Systems" 1 to 5.
Recently, there has been considerable research interest in neural network control of robots, and satisfactory results have been obtained in solving some of the special issues associated with the problems of robot control in an "on-and-off" fashion. This book is dedicated to issues on adaptive control of robots based on neural networks. The text has been carefully tailored to (i) give a comprehensive study of robot dynamics, (ii) present structured network models for robots, and (iii) provide systematic approaches for neural network based adaptive controller design for rigid robots, flexible joint robots, and robots in constraint motion. Rigorous proof of the stability properties of adaptive neural network controllers is provided. Simulation examples are also presented to verify the effectiveness of the controllers, and practical implementation issues associated with the controllers are also discussed.
This book gives an account of an ellipsoidal calculus and ellipsoidal techniques developed by the authors. The text ranges from a specially developed theory of exact set-valued solutions to the description of ellipsoidal calculus, related ellipsoidal-based methods and examples worked out with computer graphics.
This edited volume contains sixteen research articles and presents recent and pressing issues in stochastic processes, control theory, differential games, optimization, and their applications in finance, manufacturing, queueing networks, and climate control. One of the salient features is that the book is highly multi-disciplinary. It assembles experts from the fields of operations research, control theory and optimization, stochastic analysis, and financial engineering to review and substantially update the recent progress in these fields. Another distinct characteristic of the book is that all papers are motivated by applications in which optimization, control, and stochastics are inseparable. The book will be a timely addition to the literature and will be of interest to people working in the aforementioned fields. Most importantly, this volume is dedicated to Professor Suresh Sethi on the occasion of his 60th birthday. In view of his fundamental contributions, his distinguished career, his substantial achievements, his influence on the areas of control theory and applications, operations research, and management science, and his dedication to the scientific community, a number of leading experts in the fields of optimization, control, and operation management, have contributed to this volume in honor of him.
The new technological advances opened widely the application field of robots. Robots are moving from the classical application scenario with structured industrial environments and tedious repetitive tasks to new application environments that require more interaction with the humans. It is in this context that the concept of Wearable Robots (WRs) has emerged. One of the most exciting and challenging aspects in the design of biomechatronics wearable robots is that the human takes a place in the design, this fact imposes several restrictions and requirements in the design of this sort of devices. The key distinctive aspect in wearable robots is their intrinsic dual cognitive and physical interaction with humans. The key role of a robot in a physical human robot interaction (pHRI) is the generation of supplementary forces to empower and overcome human physical limits. The crucial role of a cognitive human robot interaction (cHRI) is to make the human aware of the possibilities of the robot while allowing them to maintain control of the robot at all times. This book gives a general overview of the robotics exoskeletons and introduces the reader to this robotic field. Moreover, it describes the development of an upper limb exoskeleton for tremor suppression in order to illustrate the influence of a specific application in the designs decisions."
Increasing demands on the output performance, exhaust emissions, and fuel consumption necessitate the development of a new generation of automotive engine functionality. This monograph is written by a long year developmental automotive engineer and offers a wide coverage of automotive engine control and estimation problems and its solutions. It addresses idle speed control, cylinder flow estimation, engine torque and friction estimation, engine misfire and CAM profile switching diagnostics, as well as engine knock detection. The book provides a wide and well structured collection of tools and new techniques useful for automotive engine control and estimation problems such as input estimation, composite adaptation, threshold detection adaptation, real-time algorithms, as well as the very important statistical techniques. It demonstrates the statistical detection of engine problems such as misfire or knock events and how it can be used to build a new generation of robust engine functionality. This book will be useful for practising automotive engineers, black belts working in the automotive industry as well as for lecturers and students since it provides a wide coverage of engine control and estimation problems, detailed and well structured descriptions of useful techniques in automotive applications and future trends and challenges in engine functionality.
Microsystems are an important success factor in the automobile industry. In order to fulfil the customers' requests for safety convenience and vehicle economy, and to satisfy environmental requirements, microsystems are becoming indispensable. Thus a large number of microsystem applications came into the discussion. With the international conference AMAA 2000, VDI/VDE-IT provides a platform for the discussion of all MST relevant components for automotive applications. The conference proceedings gather the papers by authors from automobile suppliers and manufacturers.
In the mathematical treatment of many problems which arise in physics, economics, engineering, management, etc., the researcher frequently faces two major difficulties: infinite dimensionality and randomness of the evolution process. Infinite dimensionality occurs when the evolution in time of a process is accompanied by a space-like dependence; for example, spatial distribution of the temperature for a heat-conductor, spatial dependence of the time-varying displacement of a membrane subject to external forces, etc. Randomness is intrinsic to the mathematical formulation of many phenomena, such as fluctuation in the stock market, or noise in communication networks. Control theory of distributed parameter systems and stochastic systems focuses on physical phenomena which are governed by partial differential equations, delay-differential equations, integral differential equations, etc., and stochastic differential equations of various types. This has been a fertile field of research with over 40 years of history, which continues to be very active under the thrust of new emerging applications. Among the subjects covered are: Control of distributed parameter systems; Stochastic control; Applications in finance/insurance/manufacturing; Adapted control; Numerical approximation . It is essential reading for applied mathematicians, control theorists, economic/financial analysts and engineers.
This book is the fourth volume of the sub series of the Lecture Notes in Mobility dedicated to Road Vehicle Automation. lts chapters have been written by researchers, engineers and analysts from all around the globe. Topics covered include public sector activities, human factors and challenges, ethical, legal, energy and technology perspectives, vehicle systems development, as well as transportation infrastructure and planning. The book is based on the Automated Vehicles Symposium which took place in San Francisco, California (USA) in July 2016.
Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot community: Coordination for Perception, Coverage, and Tracking; Task Allocation and Coordination Strategies; Modular Robots and Novel Mechanisms and Sensors; Formation Control and Planning for Robot Teams; and Learning, Adaptation, and Cognition for Robot Teams.
The Engineering of Complex Real-Time Computer Control Systems brings together in one place important contributions and up-to-date research results in this important area. The Engineering of Complex Real-Time Computer Control Systems serves as an excellent reference, providing insight into some of the most important research issues in the field.
The book largely represents the extended version of select papers from the Inter- tional Conference on Intelligent Unmanned System ICIUS 2007 which was jointly organized by the Center for Unmanned System Studies at Institut Teknologi Bandung, Artificial Muscle Research Center at Konkuk University and Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astrona- ics. The joint-event was the 3rd conference extending from International Conference on Emerging System Technology (ICEST) in 2005 and International Conference on Technology Fusion (ICTF) in 2006 both conducted in Seoul. ICIUS 2007 was focused on both theory and application primarily covering the topics on robotics, autonomous vehicles and intelligent unmanned technologies. The conference was arranged into three parallel symposia with the following scope of topics: Unmanned Systems: Micro air vehicle, Underwater vehicle, Micro-satellite, - manned aerial vehicle, Multi-agent systems, Autonomous ground vehicle, Blimp, Swarm intelligence, learning and control Robotics and Biomimetics: Artificial muscle actuators, Smart sensors, Design and applications of MEMS/NEMS system, Intelligent robot system, Evolutionary al- rithm, Control of biological systems, AI and expert systems, Biological learning control systems, Neural networks, Genetic algorithm Control and Intelligent System: Distributed intelligence, Distributed/decentralized intelligent control, Distributed or decentralized control methods, Distributed and - bedded systems, Embedded intelligent control, Complex systems, Discrete event s- tems, Hybrid systems, Networked control systems, Delay systems, Fuzzy systems, Identification and estimation, Nonlinear systems, Precision motion control, Control applications, Control engineering education.
To describe the true behavior of most real-world systems with sufficient accuracy, engineers have to overcome difficulties arising from their lack of knowledge about certain parts of a process or from the impossibility of characterizing it with absolute certainty. Depending on the application at hand, uncertainties in modeling and measurements can be represented in different ways. For example, bounded uncertainties can be described by intervals, affine forms or general polynomial enclosures such as Taylor models, whereas stochastic uncertainties can be characterized in the form of a distribution described, for example, by the mean value, the standard deviation and higher-order moments. The goal of this Special Volume on "Modeling, Design, and Simulation of Systems with Uncertainties" is to cover modern methods for dealing with the challenges presented by imprecise or unavailable information. All contributions tackle the topic from the point of view of control, state and parameter estimation, optimization and simulation. Thematically, this volume can be divided into two parts. In the first we present works highlighting the theoretic background and current research on algorithmic approaches in the field of uncertainty handling, together with their reliable software implementation. The second part is concerned with real-life application scenarios from various areas including but not limited to mechatronics, robotics, and biomedical engineering.
This book is an up-to-date self-contained compendium of the research carried out by the authors on model-based diagnosis of a class of discrete-event systems called active systems. After defining the diagnosis problem, the book copes with a variety of reasoning mechanisms that generate the diagnosis, possibly within a monitoring setting. The book is structured into twelve chapters, each of which has its own introduction and concludes with bibliographic notes and itemized summaries. Concepts and techniques are presented with the help of numerous examples, figures, and tables, and when appropriate these concepts are formalized into propositions and theorems, while detailed algorithms are expressed in pseudocode. This work is primarily intended for researchers, professionals, and graduate students in the fields of artificial intelligence and control theory.
Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likely resemble hydraulically driven hexapod robots like the ones described in this book - no longer science fiction but now a reality.
This book provides basic theories and implementations using SCILAB open-source software for digital images. The book simplifies image processing theories and well as implementation of image processing algorithms, making it accessible to those with basic knowledge of image processing. This book includes many SCILAB programs at the end of each theory, which help in understanding concepts. The book includes more than sixty SCILAB programs of the image processing theory. In the appendix, readers will find a deeper glimpse into the research areas in the image processing.
The design of nonlinear controllers for mechanical systems has been an ex tremely active area of research in the last two decades. From a theoretical point of view, this attention can be attributed to their interesting dynamic behavior, which makes them suitable benchmarks for nonlinear control the oreticians. On the other hand, recent technological advances have produced many real-world engineering applications that require the automatic con trol of mechanical systems. the mechanism for de Often, Lyapunov-based techniques are utilized as veloping different nonlinear control structures for mechanical systems. The allure of the Lyapunov-based framework for mechanical system control de sign can most likely be assigned to the fact that Lyapunov function candi dates can often be crafted from physical insight into the mechanics of the system. That is, despite the nonlinearities, couplings, and/or the flexible effects associated with the system, Lyapunov-based techniques can often be used to analyze the stability of the closed-loop system by using an energy like function as the Lyapunov function candidate. In practice, the design procedure often tends to be an iterative process that results in the death of many trees. That is, the controller and energy-like function are often constructed in concert to foster an advantageous stability property and/or robustness property. Fortunately, over the last 15 years, many system the ory and control researchers have labored in this area to produce various design tools that can be applied in a variety of situations."
In the last ten years, a true explosion of investigations into fuzzy modeling and its applications in control, diagnostics, decision making, optimization, pattern recognition, robotics, etc. has been observed. The attraction of fuzzy modeling results from its intelligibility and the high effectiveness of the models obtained. Owing to this the modeling can be applied for the solution of problems which could not be solved till now with any known conventional methods. The book provides the reader with an advanced introduction to the problems of fuzzy modeling and to one of its most important applications: fuzzy control. It is based on the latest and most significant knowledge of the subject and can be used not only by control specialists but also by specialists working in any field requiring plant modeling, process modeling, and systems modeling, e.g. economics, business, medicine, agriculture,and meteorology. |
You may like...
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Fault Detection, Supervision and Safety…
J. Chen, R.J. Patton
Paperback
R6,901
Discovery Miles 69 010
Artificial Intelligence and Data Science…
Mohsen Asadnia, Amir Razmjou, …
Paperback
R2,578
Discovery Miles 25 780
|