![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This book reports on an outstanding thesis that has significantly advanced the state-of-the-art in the area of automated negotiation. It gives new practical and theoretical insights into the design and evaluation of automated negotiators. It describes an innovative negotiating agent framework that enables systematic exploration of the space of possible negotiation strategies by recombining different agent components. Using this framework, new and effective ways are formulated for an agent to learn, bid, and accept during a negotiation. The findings have been evaluated in four annual instantiations of the International Automated Negotiating Agents Competition (ANAC), the results of which are also outlined here. The book also describes several methodologies for evaluating and comparing negotiation strategies and components, with a special emphasis on performance and accuracy measures.
This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents diverse applications of nature-inspired optimization algorithms. The sixth part contains papers describing new optimization algorithms. The seventh part contains papers describing applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. Finally, the eighth part contains papers that present enhancements to meta-heuristics based on fuzzy logic techniques.
In this book, leading authors in the field discuss developments of Ambient Assisted Living. The contributions have been chosen and invited at the 8th AAL Congress, Frankfurt/M. The meeting presents new technological developments which support the autonomy and independence of individuals with special needs. The 8th AAL Congress focusses its attention on technical assistance systems and their applications in homecare, health and care.
This monograph presents an updated source of information on the state of the art in advanced control of articulated and mobile robots. It includes relevant selected problems dealing with enhanced actuation, motion planning and control functions for articulated robots, as well as of sensory and autonomous decision capabilities for mobile robots. The basic idea behind the book is to provide a larger community of robotic researchers and developers with a reliable source of information and innovative applications in the field of control of cooperating and mobile robots. This book is the outcome of the research project MISTRAL (Methodologies and Integration of Subsystems and Technologies for Anthropic Robotics and Locomotion) funded in 2001-2002 by the Italian Ministry for Education, University and Research. The thorough discussion, rigorous treatment, and wide span of the presented work reveal the significant advances in the theoretical foundation and technology basis of the robotics field worldwide.
Safety in industrial process and production plants is a concern of rising importance, especially if people would be endangered by a catastrophic system failure. On the other hand, because the control devices which are now exploited to improve the overall performance of industrial processes include both sophisticated digital system design techniques and complex hardware (input-output sensors, actuators, components and processing units), there is an increased probability of failure. As a direct consequence of this, control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions as early as possible. One of the most promising methods for solving this problem is the "analytical redundancy" approach, in which residual signals are obtained. The basic idea consists of using an accurate model of the system to mimic the real process behaviour. If a fault occurs, the residual signal, i.e., the difference between real system and model behaviours, can be used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification. The problem is treated in all its aspects covering: choice of model structure; parameter identification; residual generation; fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques. Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques will be of interest to researchers in control and fault identification. Industrial control engineers interested in applying the latest methods in fault diagnosis will benefit from the practical examples and case studies.
This Proceedings Volume documents recent cutting-edge developments in multi-robot systems research and is the result of the Second International Workshop on Multi-Robot Systems that was held in March 2003 at the Naval Research Laboratory in Washington, D.C. This Workshop brought together top researchers working in areas relevant to designing teams of autonomous vehicles, including robots and unmanned ground, air, surface, and undersea vehicles. The workshop focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. A broad range of applications of this technology are presented in this volume, including UCAVS (Unmanned Combat Air Vehicles), micro-air vehicles, UUVs (Unmanned Underwater Vehicles), UGVs (Unmanned Ground Vehicles), planetary exploration, assembly in space, clean-up, and urban search and rescue. This Proceedings Volume represents the contributions of the top researchers in this field and serves as a valuable tool for professionals in this interdisciplinary field.
Fault Diagnosis of Dynamic Systems provides readers with a glimpse into the fundamental issues and techniques of fault diagnosis used by Automatic Control (FDI) and Artificial Intelligence (DX) research communities. The book reviews the standard techniques and approaches widely used in both communities. It also contains benchmark examples and case studies that demonstrate how the same problem can be solved using the presented approaches. The book also introduces advanced fault diagnosis approaches that are currently still being researched, including methods for non-linear, hybrid, discrete-event and software/business systems, as well as, an introduction to prognosis. Fault Diagnosis of Dynamic Systems is valuable source of information for researchers and engineers starting to work on fault diagnosis and willing to have a reference guide on the main concepts and standard approaches on fault diagnosis. Readers with experience on one of the two main communities will also find it useful to learn the fundamental concepts of the other community and the synergies between them. The book is also open to researchers or academics who are already familiar with the standard approaches, since they will find a collection of advanced approaches with more specific and advanced topics or with application to different domains. Finally, engineers and researchers looking for transferable fault diagnosis methods will also find useful insights in the book.
The chapters in this volume, and the volume itself, celebrate the life and research of Roberto Tempo, a leader in the study of complex networked systems, their analysis and control under uncertainty, and robust designs. Contributors include authorities on uncertainty in systems, robustness, networked and network systems, social networks, distributed and randomized algorithms, and multi-agent systems-all fields that Roberto Tempo made vital contributions to. Additionally, at least one author of each chapter was a research collaborator of Roberto Tempo's. This volume is structured in three parts. The first covers robustness and includes topics like time-invariant uncertainties, robust static output feedback design, and the uncertainty quartet. The second part is focused on randomization and probabilistic methods, which covers topics such as compressive sensing, and stochastic optimization. Finally, the third part deals with distributed systems and algorithms, and explores matters involving mathematical sociology, fault diagnoses, and PageRank computation. Each chapter presents exposition, provides new results, and identifies fruitful future directions in research. This book will serve as a valuable reference volume to researchers interested in uncertainty, complexity, robustness, optimization, algorithms, and networked systems.
Written by leading researchers, this book collects a number of articles considering the problems of finite-precision computing in digital controllers and filters. Topics range from analysis of fragility and finite-precision effects to the design of low-complexity digital controllers.
This book shows some contributions presented in the 2010 International Conference on Robotic Welding, Intelligence and Automation (RWIA 2010), Oct. 14-16, 2010, Shanghai, China. Welding handicraft is one of the most primordial and traditional techniques, mainly by manpower and human experiences. Weld quality and efficiency are, therefore, straightly limited by the welder s skill. In the modern manufacturing, automatic and robotic welding is becoming an inevitable trend. In recent years, the intelligentized techniques for robotic welding have a great development. The current teaching play-back welding robot is not with real-time functions for sensing and adaptive control of weld process. Generally, the key technologies on Intelligentized welding robot and robotic welding process include computer visual and other information sensing, monitoring and real-time feedback control of weld penetration and pool shape and welding quality. Seam tracking is another key technology for welding robot system. Some applications on intelligentized robotic welding technology is also described in this book, it shows a great potential and promising prospect of artificial intelligent technologies in the welding manufacturing."
Fieldbus Technology (FT) is an enabling platform that is becoming the preferred choice for the next generation real-time automation and control solutions. This book incorporates a selection of research and development papers. Topics covered include: history and background, contemporary standards, underlying architecture, comparison between different Fieldbus systems, applications, latest innovations, new trends as well as issues such as compatibility, interoperability, and interchangeability.
The book covers four research domains representing a trend for modern manufacturing control: Holonic and Multi-agent technologies for industrial systems; Intelligent Product and Product-driven Automation; Service Orientation of Enterprise s strategic and technical processes; and Distributed Intelligent Automation Systems. These evolution lines have in common concepts related to "service orientation" derived from the Service Oriented Architecture (SOA) paradigm. The service-oriented multi-agent systems approach discussed in the book is characterized by the use of a set of distributed autonomous and cooperative agents, embedded in smart components that use the SOA principles, being oriented by offer and request of services, in order to fulfil production systems and value chain goals. A new integrated vision combining emergent technologies is offered, to create control structures with distributed intelligence supporting the vertical and horizontal enterprise integration and running in truly distributed and global working environments. The service value creation model at enterprise level consists into using Service Component Architectures for business process applications, based on entities which handle services. In this componentization view, a service is a piece of software encapsulating the business/control logic or resource functionality of an entity that exhibits an individual competence and responds to a specific request to fulfil a local (product) or global (batch) objective. The service value creation model at enterprise level consists into using Service Component Architectures for business process applications, based on entities which handle services. In this componentization view, a service is a piece of software encapsulating the business/control logic or resource functionality of an entity that exhibits an individual competence and responds to a specific request to fulfil a local (product) or global (batch) objective.
Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments. Compared with classical control methods for robotic systems, the major advantages of bio-inspired self-organizing robotic systems include robustness, self-repair and self-healing in the presence of system failures and/or malfunctions, high adaptability to environmental changes, and autonomous self-organization and self-reconfiguration without a centralized control. "Bio-inspired Self-organizing Robotic Systems" provides a valuable reference for scientists, practitioners and research students working on developing control algorithms for self-organizing engineered collective systems, such as swarm robotic systems, self-reconfigurable modular robots, smart material based robotic devices, unmanned aerial vehicles, and satellite constellations.
This IMA Volume in Mathematics and its Applications ESSAYS ON MATHEMATICAL ROBOTICS is based on the proceedings of a workshop that was an integral part of the 1992-93 IMA program on "Control Theory." The workshop featured a mathematicalintroductionto kinematics and fine motion planning; dynam- ics and control of kinematically redundant robot arms including snake-like robots, multi-fingered robotic hands; methods of non-holonomic motion planning for space robots, multifingered robot hands and mobile robots; new techniques in analytical mechanics for writing the dynamics of com- plicated multi-body systems subject to constraints on angular momentum or other non-holonomic constraints. In addition to papers representing proceedings of the Workshop, this volume contains several longer papers surveying developments of the intervening years. We thank John Baillieul, Shankar S. Sastry, and Hector J. Sussmann for organizing the workshop and editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made the workshop possible. Avner Friedman Willard Miller, Jr.
Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant control. The authors have extensive teaching experience with graduate and PhD students, as well as with industrial experts. Parts of this book have been used in courses for this audience. The authors give a comprehensive introduction to the main ideas of diagnosis and fault-tolerant control and present some of their most recent research achievements obtained together with their research groups in a close cooperation with European research projects. The third edition resulted from a major re-structuring and re-writing of the former edition, which has been used for a decade by numerous research groups. New material includes distributed diagnosis of continuous and discrete-event systems, methods for reconfigurability analysis, and extensions of the structural methods towards fault-tolerant control. The bibliographical notes at the end of all chapters have been up-dated. The chapters end with exercises to be used in lectures.
This book highlights electromagnetic actuation (EMA) and sensing systems for a broad range of applications including targeted drug delivery, drug-release-rate control, catheterization, intravitreal needleless injections, wireless magnetic capsule endoscopy, and micromanipulations. It also reviews the state-of-the-art magnetic actuation and sensing technologies with remotely controlled targets used in biomedicine.
This book covers various topics regarding the design of compliant mechanisms using topology optimization that have attracted a great deal of attention in recent decades. After comprehensively describing state-of-the-art methods for designing compliant mechanisms, it provides a new topology optimization method for finding new flexure hinges. It then presents several attempts to obtain distributed compliant mechanisms using the topology optimization method. Further, it discusses a Jacobian-based topology optimization method for compliant parallel mechanisms, and introduces readers to the topology optimization of compliant mechanisms, taking into account geometrical nonlinearity and reliability. Providing a systematic method for topology optimization of flexure hinges, which are essential for designing compliant mechanisms, the book offers a valuable resource for all readers who are interested in designing compliant mechanism-based positioning stages. In addition, the methods for solving the de facto hinges in topology optimized compliant mechanisms will benefit all engineers seeking to design micro-electro-mechanical system (MEMS) structures.
In the last decade, signi?cant changes have occurred in the ?eld of vehicle motion planning, and for UAVs in particular. UAV motion planning is especially dif?cult due to several complexities not considered by earlier planning strategies: the - creased importance of differential constraints, atmospheric turbulence which makes it impossible to follow a pre-computed plan precisely, uncertainty in the vehicle state, and limited knowledge about the environment due to limited sensor capabilities. These differences have motivated the increased use of feedback and other control engineering techniques for motion planning. The lack of exact algorithms for these problems and dif?culty inherent in characterizing approximation algorithms makes it impractical to determine algorithm time complexity, completeness, and even soundness. This gap has not yet been addressed by statistical characterization of experimental performance of algorithms and benchmarking. Because of this overall lack of knowledge, it is dif?cult to design a guidance system, let alone choose the algorithm. Throughout this paper we keep in mind some of the general characteristics and requirements pertaining to UAVs. A UAV is typically modeled as having velocity and acceleration constraints (and potentially the higher-order differential constraints associated with the equations of motion), and the objective is to guide the vehicle towards a goal through an obstacle ?eld. A UAV guidance problem is typically characterized by a three-dimensional problem space, limited information about the environment, on-board sensors with limited range, speed and acceleration constraints, and uncertainty in vehicle state and sensor data.
The field of soft computing is emerging from the cutting edge
research over the last ten years devoted to fuzzy engineering and
genetic algorithms. The subject is being called soft computing and
computational intelligence. With acceptance of the research
fundamentals in these important areas, the field is expanding into
direct applications through engineering and systems science.
This book gathers extended versions of the best papers presented at the 8th IEEE conference on Intelligent Systems, held in Sofia, Bulgaria on September 4-6, 2016, which are mainly related to theoretical research in the area of intelligent systems. The main focus is on novel developments in fuzzy and intuitionistic fuzzy sets, the mathematical modelling tool of generalized nets and the newly defined method of intercriteria analysis. The papers reflect a broad and diverse team of authors, including many young researchers from Australia, Bulgaria, China, the Czech Republic, Iran, Mexico, Poland, Portugal, Slovakia, South Korea and the UK.
Following the successful 1st CEAS (Council of European Aerospace Societies) Specialist Conference on Guidance, Navigation and Control (CEAS EuroGNC) held in Munich, Germany in 2011, Delft University of Technology happily accepted the invitation of organizing the 2nd CEAS EuroGNC in Delft, The Netherlands in 2013. The goal of the conference is to promote new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems using on-board sensing, computing and systems. A great push for new developments in GNC are the ever higher safety and sustainability requirements in aviation. Impressive progress was made in new research fields such as sensor and actuator fault detection and diagnosis, reconfigurable and fault tolerant flight control, online safe flight envelop prediction and protection, online global aerodynamic model identification, online global optimization and flight upset recovery. All of these challenges depend on new online solutions from on-board computing systems. Scientists and engineers in GNC have been developing model based, sensor based as well as knowledge based approaches aiming for highly robust, adaptive, nonlinear, intelligent and autonomous GNC systems. Although the papers presented at the conference and selected in this book could not possibly cover all of the present challenges in the GNC field, many of them have indeed been addressed and a wealth of new ideas, solutions and results were proposed and presented. For the 2nd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with good journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedingsbased on the results and recommendations from the reviewers.
H-infinity engineering continues to establish itself as a discipline of applied mathematics. As such, this extensively illustrated monograph makes a significant application of H-infinity theory to electronic amplifier design, demonstrating how recent developments in H-infinity engineering equip amplifier designers with new tools and avenues for research. The presentation, at the interface of applied mathematics and engineering, emphasizes how to (1) compute the best possible performance available from any matching circuits; (2) benchmark existing matching solutions; and (3) generalize results to multiple amplifiers. As the monograph develops, many research directions are pointed out for both disciplines. The physical meaning of a mathematical problem is made explicit for the mathematician, while circuit problems are presented in the H-infinity framework for the engineer. A final chapter organizes these research topics into a collection of open problems ranging from electrical engineering, numerical implementations, and generalizations to H-infinity theory.
The term "haptics" refers to the science of sensing and manipulation through touch. Multiple disciplines such as biomechanics, psychophysics, robotics, neuroscience, and software engineering converge to support haptics, and generally, haptic research is done by three communities: the robotics community, the human computer interface community, and the virtual reality community. This book is different from any other book that has looked at haptics. The authors treat haptics as a new medium rather than just a domain within one of the above areas. They describe human haptic perception and interfaces and present fundamentals in haptic rendering and modeling in virtual environments. Diverse software architectures for standalone and networked haptic systems are explained, and the authors demonstrate the vast application spectrum of this emerging technology along with its accompanying trends. The primary objective is to provide a comprehensive overview and a practical understanding of haptic technologies. An appreciation of the close relationship between the wide range of disciplines that constitute a haptic system is a key principle towards being able to build successful collaborative haptic environments. Structured as a reference to allow for fast accommodation of the issues concerned, this book is intended for researchers interested in studying touch and force feedback for use in technological multimedia systems in computer science, electrical engineering, or other related disciplines. With its novel approach, it paves the way for exploring research trends and challenges in such fields as interpersonal communication, games, or military applications.
This book provides readers with extensive information on path planning optimization for both single and multiple Autonomous Guided Vehicles (AGVs), and discusses practical issues involved in advanced industrial applications of AGVs. After discussing previously published research in the field and highlighting the current gaps, it introduces new models developed by the authors with the goal of reducing costs and increasing productivity and effectiveness in the manufacturing industry. The new models address the increasing complexity of manufacturing networks, due for example to the adoption of flexible manufacturing systems that involve automated material handling systems, robots, numerically controlled machine tools, and automated inspection stations, while also considering the uncertainty and stochastic nature of automated equipment such as AGVs. The book discusses and provides solutions to important issues concerning the use of AGVs in the manufacturing industry, including material flow optimization with AGVs, programming manufacturing systems equipped with AGVs, reliability models, the reliability of AGVs, routing under uncertainty, and risks involved in AGV-based transportation. The clear style and straightforward descriptions of problems and their solutions make the book an excellent resource for graduate students. Moreover, thanks to its practice-oriented approach, the novelty of the findings and the contemporary topic it reports on, the book offers new stimulus for researchers and practitioners in the broad field of production engineering. |
You may like...
Cambridge Lower Secondary Computing 7…
Margaret Debbadi, Ben Barnes, …
Paperback
R952
Discovery Miles 9 520
Heinemann Information Technology for…
Deepak Dinesan, Peter Reid, …
Paperback
R1,104
Discovery Miles 11 040
Cambridge Primary Computing Learner's…
Roland Birbal, Michele Taylor, …
Paperback
R742
Discovery Miles 7 420
Compute-IT: Student's Book 1 - Computing…
George Rouse, Graham Hastings, …
Paperback
(1)R903 Discovery Miles 9 030
|