![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
"Advanced Mechatronics and MEMS Devices"describes state-of-the-art MEMS devices and introduces the latest technology in electrical and mechanical microsystems. The evolution of design in microfabrication, as well as emerging issues in nanomaterials, micromachining, micromanufacturing and microassembly are all discussed at length in this volume. Advanced Mechatronics also provides a reader with knowledge of MEMS sensors array, MEMS multidimensional accelerometer, artificial skin with imbedded tactile components, as well as other topics in MEMS sensors and transducers. The book also presents a number of topics in advanced robotics and an abundance of applications of MEMS in robotics, like reconfigurable modular snake robots, magnetic MEMS robots for drug delivery and flying robots with adjustable wings, to name a few.
This book comprises four chapters that address some of the latest research in clouds robotics and sensor clouds. The first part of the book includes two chapters on cloud robotics. The first chapter introduces a novel resource allocation framework for cloud robotics and proposes a Stackelberg game model and the corresponding task oriented pricing mechanism for resource allocation. In the second chapter, the authors apply Cloud Computing for building a Cloud-Based 3D Point Cloud extractor for stereo images. Their objective is to have a dynamically scalable and applicable to near real-time scenarios.
One of The Sunday Times' Business Books of the Year Technology is putting our humanity at risk to an unprecedented degree. This book is not for engineers who write the code or the policy makers who claim they can regulate it. This is a book for you. Because, believe it or not, you are the only one that can fix it. - Mo Gawdat 'From a brilliant mind comes a terrifying prediction' - Tim Ash, bestselling author of Unleash Your Primal Brain Artificial intelligence is smarter than humans. It can process information at lightning speed and remain focused on specific tasks without distraction. AI can see into the future, predicting outcomes and even use sensors to see around physical and virtual corners. So why does AI frequently get it so wrong? The answer is us. Humans design the algorithms that define the way that AI works, and the processed information reflects an imperfect world. Does that mean we are doomed? In Scary Smart, Mo Gawdat, the internationally bestselling author of Solve for Happy, draws on his considerable expertise to answer this question and to show what we can all do now to teach ourselves and our machines how to live better. With more than thirty years' experience working at the cutting-edge of technology and his former role as chief business officer of Google [X], no one is better placed than Mo Gawdat to explain how the Artificial Intelligence of the future works. By 2049 AI will be a billion times more intelligent than humans. Scary Smart explains how to fix the current trajectory now, to make sure that the AI of the future can preserve our species. This book offers a blueprint, pointing the way to what we can do to safeguard ourselves, those we love and the planet itself.
Robotic sailing offers the potential of wind propelled vehicles which are sufficiently autonomous to remain at sea for months at a time. These could replace or augment existing oceanographic sampling systems, be used in border surveillance and security or offer a means of carbon neutral transportation. To achieve this represents a complex, multi-disciplinary challenge to boat designers and naval architects, systems/electrical engineers and computer scientists. Since 2004 a series of competitions in the form of the Sailbot, World Robotic Sailing Championship and Microtransat competitions have sparked an explosion in the number of groups working on autonomous sailing robots. Despite this interest the longest distance sailed autonomously remains only a few hundred miles. Many of the challenges in building truly autonomous sailing robots still remain unsolved. These proceedings present the cutting edge of work in a variety of fields related to robotic sailing. They will be presented during the 5th International Robtoic Sailing Conference, which is taking place as part of the 2012 World Robotic Sailing Championships. "
The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.
This authored monograph presents a study on fundamental limits and robustness of stability and stabilization of time-delay systems, with an emphasis on time-varying delay, robust stabilization, and newly emerged areas such as networked control and multi-agent systems. The authors systematically develop an operator-theoretic approach that departs from both the traditional algebraic approach and the currently pervasive LMI solution methods. This approach is built on the classical small-gain theorem, which enables the author to draw upon powerful tools and techniques from robust control theory. The book contains motivating examples and presents mathematical key facts that are required in the subsequent sections. The target audience primarily comprises researchers and professionals in the field of control theory, but the book may also be beneficial for graduate students alike.
The book investigates the role of artificial input delay in approximating unknown system dynamics, referred to as time-delayed control (TDC), and provides novel solutions to current design issues in TDC. Its central focus is on designing adaptive-switching gain-based robust control (ARC) for a class of Euler-Lagrange (EL) systems with minimal or no knowledge of the system dynamics parameters. The newly proposed TDC-based ARC tackles the commonly observed over- and under-estimation issues in switching gain. The consideration of EL systems lends a practical perspective on the proposed methods, and each chapter is supplemented by relevant experimental data. The book offers a unique resource for researchers in the areas of ARC and TDC alike, and covers the state of the art, new algorithms, and future directions.
Recent advances in wireless technology have led to the emergence of industry standards such as WirelessHART. These strategies minimise the need for cumbersome cabling, thereby reducing costs. However, applying them involves the challenge of handling stochastic network delays, which can degrade control performance. To address this problem, commonly used simple PID could be employed. However, PID suffers from gain range limitations when used in a delayed environment. Furthermore, model-based controllers are complex and require exact models of the process and systematic system identification for implementation. Therefore, to address these issues, the book proposes control strategies that retain the simplicity of PID in terms of ease of tuning and structure, while improving on the performance of the closed-loop system with regard to stochastic network delays and mismatches. Concretely, it proposes and discusses three strategies, namely: Setpoint Weighting (SW), Filtered Predictive PI (FPPI) and Optimal Fuzzy PID. In order to optimise some of these controllers, two novel hybrid optimisation algorithms combining the dynamism of the Bacterial Foraging Algorithm (BFA) and advantages of both the Spiral Dynamic Algorithm (SDA) and the Accelerated Particle Swarm Optimisation (APSO) have been used. The strategies proposed here can also be applied in stochastic control scenarios (not necessarily wireless) characterised by uncertainties. This book will be useful to engineers and researchers in both industry and academia. In industry, it will be particularly useful to research and development efforts where PID controllers and wireless sensor networks (WSNs) involving both short and long term stochastic network delay are employed. Thus, it can be used for real-time control design in these areas. In the academic setting, the book will be useful for researchers, undergraduate and graduate students of instrumentation and control. It can also be used as reference material for teaching courses on predictive and adaptive controls and their application.
Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC'15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory."
This book focuses on the control of fractal behaviors in nonlinear dynamics systems, addressing both the principles and purposes of control. For fractals in different systems, it presents revealing studies on the theory and applications of control, reflecting a spectrum of different control methods used with engineering technology. As such, it will benefit researchers, engineers, and graduate students in fields of fractals, chaos, engineering, etc.
This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 - 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.
This book presents selected research papers from the 2015 Chinese Intelligent Systems Conference (CISC'15), held in Yangzhou, China. The topics covered include multi-agent systems, evolutionary computation, artificial intelligence, complex systems, computation intelligence and soft computing, intelligent control, advanced control technology, robotics and applications, intelligent information processing, iterative learning control, and machine learning. Engineers and researchers from academia, industry and the government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.
The book 'BiLBIQ: A biologically inspired Robot with walking and rolling locomotion' deals with implementing a locomotion behavior observed in the biological archetype Cebrennus villosus to a robot prototype whose structural design needs to be developed. The biological sample is investigated as far as possible and compared to other evolutional solutions within the framework of nature's inventions. Current achievements in robotics are examined and evaluated for their relation and relevance to the robot prototype in question. An overview of what is state of the art in actuation ensures the choice of the hardware available and most suitable for this project. Through a constant consideration of the achievement of two fundamentally different ways of locomotion with one and the same structure, a robot design is developed and constructed taking hardware constraints into account. The development of a special leg structure that needs to resemble and replace body elements of the biological archetype is a special challenge to be dealt with. Finally a robot prototype was achieved, which is able to walk and roll - inspired by the spider Cebrennus villosus.
This essential textbook concerns analysis and control of engineering mechanisms, which includes almost any apparatus with moving parts used in daily life, from musical instruments to robots. A particular characteristic of this book is that it presents with considerable breadth and rigor both vibrations and controls. Many contemporary texts combine both of these topics in a single, one term course. This text supports the more favorable circumstance where the material is covered in a one year sequence contains enough material for a two semester sequence, but it can also be used in a single semester course combining two topics. "Mechanical Systems: A Unified Approach to Vibrations and Controls" presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text.
This book gathers the peer-reviewed papers presented at the seventh edition of the international workshop "Service Orientation in Holonic and Multi-Agent Manufacturing - SOHOMA'17", held on October 19-20, 2017 and organized by the University of Nantes, France in collaboration with the CIMR Research Centre in Computer Integrated Manufacturing and Robotics at the University Politehnica of Bucharest, Romania, the LAMIH Laboratory of Industrial and Human Automation Control, Mechanical Engineering and Computer Science at the University of Valenciennes and Hainaut-Cambresis, France and the CRAN Research Centre for Automatic Control, Nancy at the University of Lorraine, France. The main objective of SOHOMA'17 was to foster innovation in smart and sustainable manufacturing and logistics systems and in this context to promote concepts, methods and solutions addressing trends in service orientation of agent-based control technologies with distributed intelligence. The book is organized in eight parts, each with a number of chapters describing research in current domains of the digital transformation in manufacturing and trends in future service and computing oriented manufacturing control: Part 1: Advanced Manufacturing Control, Part 2: Big Data Management, Part 3: Cyber-Physical Production Systems, Part 4: Cloud- and Cyber-Physical Systems for Smart and Sustainable Manufacturing, Part 5: Simulation for Physical Internet and Intelligent & Sustainable Logistics Systems, Part 6: Formal Methods and Advanced Scheduling for Future Industrial Systems, Part 7: Applications and Demonstrators, Part 8: Production and Logistic Control Systems. The contributions focus on how the digital transformation, such as the one advocated by "Industry 4.0" or "Industry of the future" concepts, can improve the maintainability and the sustainability of manufacturing processes, products, and logistics. Digital transformation relates to the interaction between the physical and informational worlds and is realized by virtualization of products, processes and resources managed as services.
Power quality describes a set of parameters of electric power
and the load's ability to function properly under specific
conditions. It is estimated that problems relating to power quality
costs the European industry hundreds of billions of Euros annually.
In contrast, financing for the prevention of these problems amount
to fragments of these costs. Power Theories for Improved Power
Quality addresses this imbalance by presenting and assessing a
range of methods and problems related to improving the quality of
electric power supply.
The book is the proceedings of the 2nd International Conference on NeuroRehabilitation (ICNR 2014), held 24th-26th June 2014 in Aalborg, Denmark. The conference featured the latest highlights in the emerging and interdisciplinary field of neural rehabilitation engineering and identified important healthcare challenges the scientific community will be faced with in the coming years. Edited and written by leading experts in the field, the book includes keynote papers, regular conference papers, and contributions to special and innovation sessions, covering the following main topics: neuro-rehabilitation applications and solutions for restoring impaired neurological functions; cutting-edge technologies and methods in neuro-rehabilitation; and translational challenges in neuro-rehabilitation. Thanks to its highly interdisciplinary approach, the book will not only be a highly relevant reference guide for academic researchers, engineers, neurophysiologists, neuroscientists, physicians and physiotherapists working at the forefront of their field, but will also help to act as bridge between the scientific, engineering and medical communities.
This monograph presents the state of the art in aeroservoelastic (ASE) modeling and analysis and develops a systematic theoretical and computational framework for use by researchers and practicing engineers. It is the first book to focus on the mathematical modeling of structural dynamics, unsteady aerodynamics, and control systems to evolve a generic procedure to be applied for ASE synthesis. Existing robust, nonlinear, and adaptive control methodology is applied and extended to some interesting ASE problems, such as transonic flutter and buffet, post-stall buffet and maneuvers, and flapping flexible wing. The author derives a general aeroservoelastic plant via the finite-element structural dynamic model, unsteady aerodynamic models for various regimes in the frequency domain, and the associated state-space model by rational function approximations. For more advanced models, the full-potential, Euler, and Navier-Stokes methods for treating transonic and separated flows are also briefly addressed. Essential ASE controller design and analysis techniques are introduced to the reader, and an introduction to robust control-law design methods of LQG/LTR and H2/H synthesis is followed by a brief coverage of nonlinear control techniques of describing functions and Lyapunov functions. Practical and realistic aeroservoelastic application examples derived from actual experiments are included throughout. Aeroservoelasiticity fills an important gap in the aerospace engineering literature and will be a valuable guide for graduate students and advanced researchers in aerospace engineering, as well as professional engineers, technicians, and test pilots in the aircraft industry and laboratories.
The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of "switched electronic systems". Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched electrical networks. In that sense the analysis of switched electronic systems represents a source for new ideas and benchmarks for switched and hybrid systems generally. Dynamics and Control of Switched Electronic Systems draws on the expertise of an international group of expert contributors to give an overview of recent advances in the modeling, simulation and control of switched electronic systems. The reader is provided with a well-organized source of references and a mathematically-based report of the state of the art in analysis and design techniques for switched power converters. Intuitive language, realistic illustrative examples and numerical simulations help the reader to come to grips with the rigorous presentation of many promising directions of research such as: converter topologies and modulation techniques; continuous-time, discrete-time and hybrid models; modern control strategies for power converters; and challenges in numerical simulation. The guidance and information imparted in this text will be appreciated by engineers, and applied mathematicians working on system and circuit theory, control systems development, and electronic and energy conversion systems design.
Most of the research and experiments in the fields of modeling and control systems have spent significant efforts to find rules from various complicated phenomena by principles, observations, measured data, logic derivations. The rules are normally summarized as concise and quantitative expressions or "models". "Identification" provides mechanisms to establish the models and "control" provides mechanisms to improve system performances.This book reflects the relevant studies and applications in the area of renewable energies, with the latest research from interdisciplinary theoretical studies, computational algorithm development to exemplary applications. It discusses how modeling and control methods such as recurrent neural network, Pitch Angle Control, Fuzzy control, Sliding Mode Control and others are used in renewable systems. It covers topics as photovoltaic systems, wind turbines, maximum power point tracking, batteries for renewable energies, solar energy, thermal energy and so on. This book is edited and written by leading experts in the field and offers an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, control system and energy.
The most outstanding feature of this book is that it treats the design of filters that approximate a constant group delay, and both, the prescribed magnitude and group delay response of one-dimensional as well as two-dimensional digital filters. It so fills a void in the literature, that almost solely deals with the magnitude response of the filter transfer function. The volume contains many of the important results that have appeared in professional journals only recently.
This book focuses on engineering design approaches for spacecraft antennas. Based on their functions in spacecraft, it discusses practical antenna design, measurement and testing. Most of the antennas covered originated at the China Academy of Space Technology (CAST), which has launched almost 300 satellites into orbit. The book presents antenna systems for seven existing spacecraft designs, while also introducing readers to new antenna technologies for spacecraft. This book is intended for researchers, graduate students, and engineers in various fields of aerospace technology and astronautics, especially spacecraft design, communication engineering and related areas.
Measuring Technology and Mechatronics Automation in Electrical Engineering includes select presentations on measuring technology and mechatronics automation related to electrical engineering, originally presented during the International Conference on Measuring Technology and Mechanatronics Automation (ICMTMA2012). This Fourth ICMTMA, held at Sanya, China, offered a prestigious, international forum for scientists, engineers, and educators to present the state of the art of measuring technology and mechatronics automation research. |
![]() ![]() You may like...
Engineering the Guitar - Theory and…
Richard Mark French
Hardcover
Transducers and Arrays for Underwater…
John L. Butler, Charles H Sherman
Hardcover
Principles of Vibration and Sound
Thomas D. Rossing, Neville H. Fletcher
Hardcover
R1,967
Discovery Miles 19 670
|