![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This book presents a domain of extreme industrial and scientific interest: the study of smart systems and structures. It presents polytope projects as comprehensive physical and cognitive architectures that support the investigation, fabrication and implementation of smart systems and structures. These systems feature multifunctional components that can perform sensing, control, and actuation. In light of the fact that devices, tools, methodologies and organizations based on electronics and information technology for automation, specific to the third industrial revolution, are increasingly reaching their limits, it is essential that smart systems be implemented in industry. Polytope projects facilitate the utilization of smart systems and structures as key elements of the fourth industrial revolution. The book begins by presenting polytope projects as a reference architecture for cyber-physical systems and smart systems, before addressing industrial process synthesis in Chapter 2. Flow-sheet trees, cyclic separations and smart configurations for multi-component separations are discussed here. In turn, Chapter 3 highlights periodic features for drug delivery systems and networks of chemical reactions, while Chapter 4 applies conditioned random walks to polymers and smart materials structures. Chapter 5 examines self-assembly and self-reconfiguration at different scales from molecular to micro systems. Smart devices and technologies are the focus of chapter 6. Modular micro reactor systems and timed automata are examined in selected case studies. Chapter 7 focuses on inferential engineering designs, concept-knowledge, relational concept analysis and model driven architecture, while Chapter 8 puts the spotlight on smart manufacturing, industry 4.0, reference architectures and models for new product development and testing. Lastly, Chapter 9 highlights the polytope projects methodology and the prospects for smart systems and structures. Focusing on process engineering and mathematical modeling for the fourth industrial revolution, the book offers a unique resource for engineers, scientists and entrepreneurs working in chemical, biochemical, pharmaceutical, materials science or systems chemistry, students in various domains of production and engineering, and applied mathematicians.
This book provides the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible, although a more theoretical control viewpoint is also given. Focusing on the induction motor with, the concepts of stability and nonlinear control theory given in appendices, this book covers: speed sensorless control; design of adaptive observers and parameter estimators; a discussion of nonlinear adaptive controls containing parameter estimation algorithms; and comparative simulations of different control algorithms. The book sets out basic assumptions, structural properties, modelling, state feedback control and estimation algorithms, then moves to more complex output feedback control algorithms, based on stator current measurements, and modelling for speed sensorless control. The induction motor exhibits many typical and unavoidable nonlinear features.
This volume is a collection of research studies on the modeling of emotions in complex autonomous systems. Several experts in the field are reporting their efforts and reviewing the literature in order to shed lights on how the processes of coding and decoding emotional states took place in humans, which are the physiological, physical, and psychological variables involved, invent new mathematical models and algorithms to describe them, and motivate these investigations in the light of observable societal changes and needs, such as the aging population and the cost of health care services. The consequences are the implementation of emotionally and socially believable machines, acting as helpers into domestic spheres, where emotions drive behaviors and actions. The contents of the book are highly multidisciplinary since the modeling of emotions in robotic socially believable systems requires a holistic perspective on topics coming from different research domains such as computer science, engineering, sociology, psychology, linguistic, and information communication. The book is of interest both to experts and students since last research works on a so complex multidisciplinary topic are described in a neat and didactical scientific language.
This book presents operational and practical issuesof automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modernvehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, "Automotive Mechatronics" aimsat improving automotive mechatronics education and emphasises the trainingof students' experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME I: RBW or XBW unibody or chassis-motion mechatronic control hypersystems;DBW AWD propulsion mechatronic control systems; BBW AWB dispulsion mechatronic control systems; VOLUME II: SBW AWS conversion mechatronic control systems; ABW AWA suspension mechatronic control systems. This volumewas developed for undergraduate and postgraduate students as wellas for professionals involved in all disciplines related to the design or research and development of automotive vehicle dynamics, powertrains, brakes, steering, and shock absorbers (dampers). Basic knowledge of college mathematics, college physics, and knowledge of the functionality of automotive vehicle basic propulsion, dispulsion, conversion and suspension systems is required. "
Modern technical advancements in areas such as robotics, multi-body systems, spacecraft, control, and design of complex mechanical devices and mechanisms in industry require the knowledge to solve advanced concepts in dynamics. "Mechanisms and Robots Analysis with MATLAB" provides a thorough, rigorous presentation of kinematics and dynamics. The book uses MATLAB as a tool to solve problems from the field of mechanisms and robots. The book discusses the tools for formulating the mathematical equations, and also the methods of solving them using a modern computing tool like MATLAB. An emphasis is placed on basic concepts, derivations, and interpretations of the general principles. The book is of great benefit to senior undergraduate and graduate students interested in the classical principles of mechanisms and robotics systems. Each chapter introduction is followed by a careful step-by-step presentation, and sample problems are provided at the end of every chapter.
This book contains applications of micromechanisms and microactuators in several very modern technical fields such as mechatronics, biomechanics, machines, micromachines, robotics and apparatuses. In connection with its topic, the work combines the theoretical results with experimental tests on micromechanisms and microactuators. The book presents the most recent research advances in Machine and Mechanisms Science. It includes the accepted reviewed papers of researchers specialized in the topics of the conference: microactuators and micro-assembly, micro sensors involving movable solids, micro-opto-mechanical devices, mechanical tools for cell and tissue studies, micromanipulation and micro-stages, micro-scale flight and swimming, micro-robotics and surgical tools, micron-scale power generation, miniature manufacturing machines, micromechatronics and micro-mechanisms, biomechanics micro and nano scales and control issues in microsystems. The presented applications of micromechanisms and microactuators in many technical fields will interest industrial companies and encourage scientifical knowledge and cooperation between academia and industry.
The MSP430 is a simple 16-bit microcontroller with a compact and
economical CPU containing only 27 instructions and 16 registers. It
offers other advantages which make it suitable for low power
applications: a rich variety of peripherals for analog input and
output; rapid processing wake up time; the treatment of data and
address on equal footing.
Systems, cybernetics, control, and automation (SCCA) are four interrelated and overlapping scientific and technological fields that have contributed substantially to the development, growth, and progress of human society. A large number of models, methods, and tools were developed that assure high efficiency of SCCA applied to practical situations. The real-life applications of SCCA encompass a wide range of man-made or biological systems, including transportations, power generation, chemical industry, robotics, manufacturing, cybernetics organisms (cyborgs), aviation, economic systems, enterprise, systems, medical/health systems, environmental applications, and so on. The SCCA fields exhibit strong influences on society and rise, during their use and application, many ethical concerns and dilemmas. This book provides a consolidated and concise overview of SCCA, in a single volume for the first time, focusing on ontological, epistemological, social impact, ethical, and general philosophical issues. It is appropriate for use in engineering courses as a convenient tutorial source providing fundamental conceptual and educational material on these issues, or for independent reading by students and scientists. Included in the book is: * Background material on philosophy and systems theory * Major ontological, epistemological, societal and ethical/philosophical aspects of the four fields that are considered * Over 400 references and a list of 130 additional books in the relevant fields * Over 100 colored photos and 70 line figures that illustrate the text
Kinematics is an exciting area of computational mechanics which plays a central role in a great variety of fields and industrial applications. Apart from research in pure kinematics, the field offers challenging problems of practical relevance that need to be solved in an interdisciplinary manner in order for new technologies to develop. The present book collects a number of important contributions presented during the First Conference on Interdisciplinary Applications of Kinematics (IAK 2008) held in Lima, Peru. To share inspiration and non-standard solutions among the different applications, the conference brought together scientists from several research fields related to kinematics, such as for example, computational kinematics, multibody systems, industrial machines, robotics, biomechanics, mechatronics and chemistry. The conference focused on all aspects of kinematics, namely modeling, optimization, experimental validation, industrial applications, theoretical kinematical methods, and design. The results should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics.
The definitive guide toadvanced control system design Advanced Modern Control System Theory and Design offers the most comprehensive treatment of advanced control systems available today. Superbly organized and easy to use, this book is designed for an advanced course and is a companion volume to the introductory text, Modern Control System Theory and Design, Second Edition (or any other introductory book on control systems). In addition, it can serve as an excellent text for practicing control system engineers who need to learn more advanced control systems techniques in order to perform their tasks. Advanced Modern Control Systems Theory and Design briefly reviews introductory control system analysis concepts and then presents the methods for designing linear control sys-tems using single-degree and two-degrees-of-freedom compensation techniques. The very important subjects of modern control system design using state-space, pole placement, Ackermann's formula, estimation, robust control, and H8 techniques are then presented. The following crucial subjects are then covered in the presentation:
Other notable features of this volume are:
This book meets head-on the difficulty of making practical use of new systems theory, presenting a selection of varied applications together with relevant theory. It shows how workable identification and control solutions can be derived by adapting and extrapolating from the theory. Each chapter has a common structure: a brief presentation of theory; the description of a particular application; experimental results; and a section highlighting, explaining and laying out solutions to the discrepancy between the theoretical and the practical.
Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC'15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.
Modeling and Control of Batch Processes presents state-of-the-art techniques ranging from mechanistic to data-driven models. These methods are specifically tailored to handle issues pertinent to batch processes, such as nonlinear dynamics and lack of online quality measurements. In particular, the book proposes: a novel batch control design with well characterized feasibility properties; a modeling approach that unites multi-model and partial least squares techniques; a generalization of the subspace identification approach for batch processes; and applications to several detailed case studies, ranging from a complex simulation test bed to industrial data. The book's proposed methodology employs statistical tools, such as partial least squares and subspace identification, and couples them with notions from state-space-based models to provide solutions to the quality control problem for batch processes. Practical implementation issues are discussed to help readers understand the application of the methods in greater depth. The book includes numerous comments and remarks providing insight and fundamental understanding into the modeling and control of batch processes. Modeling and Control of Batch Processes includes many detailed examples of industrial relevance that can be tailored by process control engineers or researchers to a specific application. The book is also of interest to graduate students studying control systems, as it contains new research topics and references to significant recent work. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity issue of Jacobian matrix, global task-space control, which are also presented in this book. The target audience for this book includes scientists, engineers and practitioners involved in the field of robot control theory.
Networked and Distributed Predictive Control presents rigorous, yet practical, methods for the design of networked and distributed predictive control systems - the first book to do so. The design of model predictive control systems using Lyapunov-based techniques accounting for the influence of asynchronous and delayed measurements is followed by a treatment of networked control architecture development. This shows how networked control can augment dedicated control systems in a natural way and takes advantage of additional, potentially asynchronous and delayed measurements to maintain closed loop stability and significantly to improve closed-loop performance. The text then shifts focus to the design of distributed predictive control systems that cooperate efficiently in computing optimal manipulated input trajectories that achieve desired stability, performance and robustness specifications but spend a fraction of the time required by centralized control systems. Key features of this book include: * new techniques for networked and distributed control system design; * insight into issues associated with networked and distributed predictive control and their solution; * detailed appraisal of industrial relevance using computer simulation of nonlinear chemical process networks and wind- and solar-energy-generation systems; and * integrated exposition of novel research topics and rich resource of references to significant recent work. A full understanding of Networked and Distributed Predictive Control requires a basic knowledge of differential equations, linear and nonlinear control theory and optimization methods and the book is intended for academic researchers and graduate students studying control and for process control engineers. The constant attention to practical matters associated with implementation of the theory discussed will help each of these groups understand the application of the book's methods in greater depth.
This book reports on an outstanding research devoted to modeling and control of dynamic systems using fractional-order calculus. It describes the development of model-based control design methods for systems described by fractional dynamic models. More than 300 years had passed since Newton and Leibniz developed a set of mathematical tools we now know as calculus. Ever since then the idea of non-integer derivatives and integrals, universally referred to as fractional calculus, has been of interest to many researchers. However, due to various issues, the usage of fractional-order models in real-life applications was limited. Advances in modern computer science made it possible to apply efficient numerical methods to the computation of fractional derivatives and integrals. This book describes novel methods developed by the author for fractional modeling and control, together with their successful application in real-world process control scenarios.
This monograph describes a new family of algorithms for the simultaneous localization and mapping (SLAM) problem in robotics, called FastSLAM. The FastSLAM-type algorithms have enabled robots to acquire maps of unprecedented size and accuracy, in a number of robot application domains and have been successfully applied in different dynamic environments, including a solution to the problem of people tracking.
This book is intended for engineers, technicians and people who plan to use fuzzy control in more or less developed and advanced control systems for manufacturing processes, or directly for executive equipment. Assuming that the reader possesses elementary knowledge regarding fuzzy sets and fuzzy control, by way of a reminder, the first parts of the book contain a reminder of the theoretical foundations as well as a description of the tools to be found in the Matlab/Simulink environment in the form of a toolbox. The major part of the book presents applications for fuzzy controllers in control systems for various manufacturing and engineering processes. It presents seven processes and problems which have been programmed using fuzzy controllers. The issues discussed concern the field of Environmental Engineering. Examples are the control of a flood wave passing through a hypothetical, and then the real Dobczyce reservoir in the Raba River, which is located in the upper Vistula River basin in Southern Poland, the control and water management in a cascade of reservoirs, a broadly defined combustion process model, modern water heating systems and many other.
Edge-of-Things in Personalized Healthcare Support Systems discusses and explores state-of-the-art technology developments in storage and sharing of personal healthcare records in a secure manner that is globally distributed to incorporate best healthcare practices. The book presents research into the identification of specialization and expertise among healthcare professionals, the sharing of records over the cloud, access controls and rights of shared documents, document privacy, as well as edge computing techniques which help to identify causes and develop treatments for human disease. The book aims to advance personal healthcare, medical diagnosis, and treatment by applying IoT, cloud, and edge computing technologies in association with effective data analytics.
Can we make machines that think and act like humans or other natural intelligent agents? The answer to this question depends on how we see ourselves and how we see the machines in question. Classical AI and cognitive science had claimed that cognition is computation, and can thus be reproduced on other computing machines, possibly surpassing the abilities of human intelligence. This consensus has now come under threat and the agenda for the philosophy and theory of AI must be set anew, re-defining the relation between AI and Cognitive Science. We can re-claim the original vision of general AI from the technical AI disciplines; we can reject classical cognitive science and replace it with a new theory (e.g. embodied); or we can try to find new ways to approach AI, for example from neuroscience or from systems theory. To do this, we must go back to the basic questions on computing, cognition and ethics for AI. The 30 papers in this volume provide cutting-edge work from leading researchers that define where we stand and where we should go from here.
Multisensor fusion systems are only practical if the algorithms used are practical and effective, and if there is efficient database support. The first part of this book discusses a wide range of issues related to the development of robust, context-sensitive, and efficient data fusion algorithms. The second part addresses database requirements, structures, and issues related to achieving overall computational efficiency. Featuring highly accessible notation, the processing model and database issues presented in the text are aimed at system developers working in sensor fusion, automatic target recognition, multiple-target tracking, robotic control, automated image understanding, and large-scale integration and fabrication.
This book contains selected papers that address a variety of topics related to the design, development and operation of unmanned and fully autonomous sailing boats. These papers were presented in the 9th International Robotic Sailing Conference, in association with the 9th World Robotic Sailing Championship that took place in Viana do Castelo, Portugal from the 5th to 10th of September 2016. The book is divided in three parts, each focusing on key aspects of robotic sailing. The first part addresses the design, construction and validation of autonomous sailboat platforms, including their rigs, appendages and control mechanisms. The second part is devoted to the development of sensors and algorithms to enhance the performance of robotic sailing boats, in terms of their speed, course control and manoeuvring ability. Finally, the papers in the last part are dedicated to the improvement of behaviours required for the accomplishment of complex autonomous missions. Robotic sailing is a relatively new multidisciplinary area of research, with a recognized great potential for persistent ocean observation. Using the wind for boat propulsion is something mankind has been doing for centuries. Automating and optimizing the sailing process in the harsh marine environment is an ever present challenge which is now promising to bear fruit.
This book presents, in a comprehensive way, current unmanned aviation regulation, airworthiness certification, special aircraft categories, pilot certification, federal aviation requirements, operation rules, airspace classes and regulation development models. It discusses unmanned aircraft systems levels of safety derived mathematically based on the corresponding levels for manned aviation. It provides an overview of the history and current status of UAS airworthiness and operational regulation worldwide. Existing regulations have been developed considering the need for a complete regulatory framework for UAS. It focuses on UAS safety assessment and functional requirements, achieved in terms of defining an "Equivalent Level of Safety," or ELOS, with that of manned aviation, specifying what the ELOS requirement entails for UAS regulations. To accomplish this, the safety performance of manned aviation is first evaluated, followed by a novel model to derive reliability requirements for achieving target levels of safety (TLS) for ground impact and mid-air collision accidents.It discusses elements of a viable roadmap leading to UAS integration in to the NAS. For this second edition of the book almost all chapters include major updates and corrections. There is also a new appendix chapter.
A complete solution for problems of vibration control in structures that may be subject to a broadband primary vibration field, this book addresses the following steps: experimental identification of the dynamic model of the structure; optimal placement of sensors and actuators; formulation of control constraints in terms of controller frequency response shape; controller design and simulation; and controller implementation and rapid prototyping. The identification procedure is a gray-box approach tailored to the estimation of modal parameters of large-scale flexible structures. The actuator/sensor placement algorithm maximizes a modal controllability index improving the effectiveness of the control. Considering limitations of sensors and actuators, the controller is chosen as a stable, band-pass MIMO system resulting from the closed-form solution of a robust control problem. Experimental results on an aeronautical stiffened skin panel are presented using rapid-prototyping hardware.
This book presents hardware-efficient algorithms and FPGA implementations for two robotic tasks, namely exploration and landmark determination. The work identifies scenarios for mobile robotics where parallel processing and selective shutdown offered by FPGAs are invaluable. The book proceeds to systematically develop memory-driven VLSI architectures for both the tasks. The architectures are ported to a low-cost FPGA with a fairly small number of system gates. |
You may like...
Design of Feedback Control Systems
Raymond T. Stefani, Bahram Shahian, …
Hardcover
R6,540
Discovery Miles 65 400
Artificial Intelligence in Real-Time…
Y.-H. Pao, S.R. LeClair
Paperback
R2,020
Discovery Miles 20 200
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Handbook of Robotic and Image-Guided…
Mohammad Hossein Abedin Nasab
Hardcover
R6,012
Discovery Miles 60 120
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
|