Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This book at hand is an appropriate addition to the field of fractional calculus applied to control systems. If an engineer or a researcher wishes to delve into fractional-order systems, then this book has many collections of such systems to work upon, and this book also tells the reader about how one can convert an integer-order system into an appropriate fractional-order one through an efficient and simple algorithm. If the reader further wants to explore the controller design for the fractional-order systems, then for them, this book provides a variety of controller design strategies. The use of fractional-order derivatives and integrals in control theory leads to better results than integer-order approaches and hence provides solid motivation for further development of control theory. Fractional-order models are more useful than the integer-order models when accuracy is of paramount importance. Real-time experimental validation of controller design strategies for the fractional-order plants is available. This book is beneficial to the academic institutes for postgraduate and advanced research-level that need a specific textbook on fractional control and its applications in srobotic manipulators. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students.
This book is a concise navigator across the history of cybernetics, its state-of-the-art and prospects. The evolution of cybernetics (from N. Wiener to the present day) and the reasons of its ups and downs are presented. The correlation of cybernetics with the philosophy and methodology of control, as well as with system theory and systems analysis is clearly demonstrated. The book presents a detailed analysis focusing on the modern trends of research in cybernetics. A new development stage of cybernetics (the so-called cybernetics 2.0) is discussed as a science on general regularities of systems organization and control. The author substantiates the topicality of elaborating a new branch of cybernetics, i.e. organization theory which studies an organization as a property, process and system. The book is intended for theoreticians and practitioners, as well as for students, postgraduates and doctoral candidates. In the first place, the target audience includes tutors and lecturers preparing courses on cybernetics, control theory and systems science.
This book is the first textbook specially on multicopter systems in the world. It provides a comprehensive overview of multicopter systems, rather than focusing on a single method or technique. The fifteen chapters are divided into five parts, covering the topics of multicopter design, modeling, state estimation, control, and decision-making. It differs from other books in the field in three major respects: it is basic and practical, offering self-contained content and presenting hands-on methods; it is comprehensive and systematic; and it is timely. It is also closely related to the autopilot that users often employ today and provides insights into the code employed. As such, it offers a valuable resource for anyone interested in multicopters, including students, teachers, researchers, and engineers. This introductory text is a welcome addition to the literature on multicopter design and control, on which the author is an acknowledged authority. The book is directed to advanced undergraduate and beginning graduate students in aeronautical and control (or electrical) engineering, as well as to multicopter designers and hobbyists. ------- Professor W. Murray Wonham, University of Toronto "This is the single best introduction to multicopter control. Clear, comprehensive and progressing from basic principles to advanced techniques, it's a must read for anyone hoping to learn how to design flying robots." ------- Chris Anderson, 3D Robotics CEO.
This self-contained book, written by active researchers, presents up-to-date information on smart maintenance strategies for human-robot interaction (HRI) and the associated applications of novel search algorithms in a single volume, eliminating the need to consult scattered resources. Unlike other books, it addresses maintaining a smart HRI from three dimensions, namely, hardware, cyberware, and hybrid-asset management, covering problems encountered in each through a wide variety of representative examples and elaborated illustrations. Further, the diverse mathematical models and intelligent systems constructions make the book highly practical. It enables readers interested in maintenance, robotics, and intelligent systems but perplexed by myriads of interrelated issues to grasp basic methodologies. At the same time, the referenced literature can be used as a roadmap for conducting deeper researches.
This book seeks to interpret connections between the machine brain, mind and vision in an alternative way and promote future research into the Interdisciplinary Evolution of Machine Brain (IEMB). It gathers novel research on IEMB, and offers readers a step-by-step introduction to the theory and algorithms involved, including data-driven approaches in machine learning, monitoring and understanding visual environments, using process-based perception to expand insights, mechanical manufacturing for remote sensing, reconciled connections between the machine brain, mind and vision, and the interdisciplinary evolution of machine intelligence. This book is intended for researchers, graduate students and engineers in the fields of robotics, Artificial Intelligence and brain science, as well as anyone who wishes to learn the core theory, principles, methods, algorithms, and applications of IEMB.
In almost all depictions of the future, one technology plays a prominent role - the robot. Science fiction movies and stories tell us that, in the not so distant future, robots - from Robbie the Robot to C3PO to the Terminator - will be everywhere, taking care of every human need. Those are projections of the future. But robots have a history as well, and The Robot: A Life Story of a Technology tells their story. During the Englightenment, "automata" were mechnical toys that could simulate human actions. Robots became essential parts of factories, performing tasks perfectly that would be either too dangerous or boring for humans. And recent advances in artificial intelligence have made robots that can behave with intelligence. The Robot covers all aspects of the history of robotics: BLThe mechanical toys in the Enlightenment, from mechanical timepieces and early computational devices, to music boxes and automated human-like figures designed to amuse royalty. BLThe use of automation in the Industrial Revolution, such as the Jacquard punch card loom and the famous "difference engine" of Charles Babbage and Ada Lovelace, and the use of robotic arms in automation. How by the mid-20th century robots became the icon for the future, and became an important feature of the popular culture. BLCurrent trends in robotics, such as research into artificial intelligence and the creation of "friendly robots" that could make an impact in the marketplace. The volume includes a timeline of important events, a glossary of terms, and a bibliography of important primary and secondary sources that are useful for further research.
This book focuses on small flying drones and their applications in conducting geographic surveys. Scholars and professionals will discover the potential of this tool, and hopefully develop a conceptual and methodological framework for doing the following things: a) Translate their data acquisition needs into specifications. (b) Use the developed specifications to choose the best accessible configuration for their drones, and (c) Design and organize effective and low-cost field deployment and flight operations by integrating technical aspects with regulatory and research requirements. Readers can apply this knowledge to work in cartography, environmental monitoring and analysis, land-use studies and landscape archaeology. Particular attention is also given to the reasons why a drone can dramatically boost a geographer's capability to understand geographic phenomena both from hard-science and humanities-oriented approach.
This book documents the state of the art in the field of ambient assisted living (AAL), highlighting the impressive potential of novel methodologies and technologies to enhance well-being and promote active ageing. The coverage is wide ranging, with sections on assistive devices, elderly people monitoring, home rehabilitation, ICT solutions for AAL, living with chronic conditions, robotic assistance for the elderly, sensing technologies for AAL, and smart housing. The book comprises a selection of the best papers presented at the 7th Italian Forum on Ambient Assisted Living (ForitAAL 2016), which was held in Pisa, Italy, in June 2016 and brought together end users, technology teams, and policy makers to develop a consensus on how to improve provision for elderly and impaired people. Readers will find that the expert contributions offer clear insights into the ways in which the most recent exciti ng advances may be expected to assist in addressing the needs of the elderly and those with chronic conditions.
This book focuses on universal nonlinear dynamics model of mesoscale eddies. The results of this book are not only the direct-type applications of pure mathematical limit cycle theory and fractal theory in practice but also the classic combination of nonlinear dynamic systems in mathematics and the physical oceanography. The universal model and experimental verification not only verify the relevant results that are obtained by Euler's form but also, more importantly, are consistent with observational numerical statistics. Due to the universality of the model, the consequences of the system are richer and more complete. The comprehensive and systematic mathematical modeling of mesoscale eddies is one of the major features of the book, which is particularly suited for readers who are interested to learn fractal analysis and prediction in physical oceanography. The book benefits researchers, engineers, and graduate students in the fields of mesoscale eddies, fractal, chaos, and other applications, etc.
This book gathers the outcomes of the thirteenth Workshop on the Algorithmic Foundations of Robotics (WAFR), the premier event for showcasing cutting-edge research on algorithmic robotics. The latest WAFR, held at Universidad Politecnica de Yucatan in Merida, Mexico on December 9-11, 2018, continued this tradition. This book contains fifty-four papers presented at WAFR, which highlight the latest research on fundamental algorithmic robotics (e.g., planning, learning, navigation, control, manipulation, optimality, completeness, and complexity) demonstrated through several applications involving multi-robot systems, perception, and contact manipulation. Addressing a diverse range of topics in papers prepared by expert contributors, the book reflects the state of the art and outlines future directions in the field of algorithmic robotics.
Mechanical laws of motion were applied very early for better understanding anthropomorphic action as suggested in advance by Newton "For from hence are easily deduced the forces of machines, which are compounded of wheels, pullies, levers, cords, and weights, ascending directly or obliquely, and other mechanical powers; as also the force of the tendons to move the bones of animals". In the 19th century E.J. Marey and E. Muybridge introduced chronophotography to scientifically investigate animal and human movements. They opened the field of motion analysis by being the first scientists to correlate ground reaction forces with kinetics. Despite of the apparent simplicity of a given skilled movement, the organization of the underlying neuro-musculo-skeletal system remains unknown. A reason is the redundancy of the motor system: a given action can be realized by different muscle and joint activity patterns, and the same underlying activity may give rise to several movements. After the pioneering work of N. Bernstein in the 60's on the existence of motor synergies, numerous researchers "walking on the border" of their disciplines tend to discover laws and principles underlying the human motions and how the brain reduces the redundancy of the system. These synergies represent the fundamental building blocks composing complex movements. In robotics, researchers face the same redundancy and complexity challenges as the researchers in life sciences. This book gathers works of roboticists and researchers in biomechanics in order to promote an interdisciplinary research on anthropomorphic systems at large and on humanoid robotics in particular.
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
This book focuses on the design of Robotic Flexible Assembly Cell (RFAC) with multi-robots. Its main contribution consists of a new effective strategy for scheduling RFAC in a multi-product assembly environment, in which dynamic status and multi-objective optimization problems occur. The developed strategy, which is based on a combination of advanced solution approaches such as simulation, fuzzy logic, system modeling and the Taguchi optimization method, fills an important knowledge gap in the current literature and paves the way for future research towards the goal of employing flexible assembly systems as effectively as possible despite the complexity of their scheduling.
Focussing on the key technologies in developing robots for a wide range of medical rehabilitation activities - which will include robotics basics, modelling and control, biomechanics modelling, rehabilitation strategies, robot assistance, clinical setup/implementation as well as neural and muscular interfaces for rehabilitation robot control - this book is split into two parts; a review of the current state of the art, and recent advances in robotics for medical rehabilitation. Both parts will include five sections for the five key areas in rehabilitation robotics: (i) the upper limb; (ii) lower limb for gait rehabilitation (iii) hand, finger and wrist; (iv) ankle for strains and sprains; and (v) the use of EEG and EMG to create interfaces between the neurological and muscular functions of the patients and the rehabilitation robots. Each chapter provides a description of the design of the device, the control system used, and the implementation and testing to show how it fulfils the needs of that specific area of rehabilitation. The book will detail new devices, some of which have never been published before in any journal or conference.
This book develops a set of reference methods capable of modeling uncertainties existing in membership functions, and analyzing and synthesizing the interval type-2 fuzzy systems with desired performances. It also provides numerous simulation results for various examples, which fill certain gaps in this area of research and may serve as benchmark solutions for the readers. Interval type-2 T-S fuzzy models provide a convenient and flexible method for analysis and synthesis of complex nonlinear systems with uncertainties.
In industrial engineering and manufacturing, control of individual processes and systems is crucial to developing a quality final product. Rapid developments in technology are pioneering new techniques of research in control and automation with multi-disciplinary applications in electrical, electronic, chemical, mechanical, aerospace, and instrumentation engineering. The Handbook of Research on Advanced Intelligent Control Engineering and Automation presents the latest research into intelligent control technologies with the goal of advancing knowledge and applications in various domains. This text will serve as a reference book for scientists, engineers, and researchers, as it features many applications of new computational and mathematical tools for solving complicated problems of mathematical modeling, simulation, and control.
This book highlights selected papers presented at the 2nd International Symposium on Artificial Intelligence and Robotics 2017 (ISAIR2017), held in Nakamura Centenary Memorial Hall, Kitakyushu, Japan on November 25-26, 2017. Today, the integration of artificial intelligence and robotic technologies has become a topic of growing interest for both researchers and developers from academic fields and industries worldwide, and artificial intelligence is poised to become the main approach pursued in next-generation robotics research. The rapidly growing number of artificial intelligence algorithms and big data solutions has significantly extended the number of potential applications for robotic technologies. However, it also poses new challenges for the artificial intelligence community. The aim of this symposium is to provide a platform for young researchers to share the latest scientific achievements in this field, which are discussed in these proceedings.
This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the analysis of the modeling of the developed algorithms in different application areas.
This book presents a class of novel, self-learning, optimal control schemes based on adaptive dynamic programming techniques, which quantitatively obtain the optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. When the system model is known, self-learning optimal control is designed on the basis of the system model; when the system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to complement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students in control science and engineering.
This book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments. The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton-Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.
This book explores novel aspects of social robotics, spoken dialogue systems, human-robot interaction, spoken language understanding, multimodal communication, and system evaluation. It offers a variety of perspectives on and solutions to the most important questions about advanced techniques for social robots and chat systems. Chapters by leading researchers address key research and development topics in the field of spoken dialogue systems, focusing in particular on three special themes: dialogue state tracking, evaluation of human-robot dialogue in social robotics, and socio-cognitive language processing. The book offers a valuable resource for researchers and practitioners in both academia and industry whose work involves advanced interaction technology and who are seeking an up-to-date overview of the key topics. It also provides supplementary educational material for courses on state-of-the-art dialogue system technologies, social robotics, and related research fields.
This book compiles some of the latest research in cooperation between robots and sensor networks. Structured in twelve chapters, this book addresses fundamental, theoretical, implementation and experimentation issues. The chapters are organized into four parts namely multi-robots systems, data fusion and localization, security and dependability, and mobility.
This book explores various intelligent algorithms including evolutionary algorithms, swarm intelligence-based algorithms for analysis and control of dynamical systems. Both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems are explored for analysis and control purposes. The applications of intelligent algorithm vary from approximation to optimal control design. The applications of intelligent algorithms not only improve understanding of a dynamical system but also enhance the control efficacy. The intelligent algorithms are now readily applied to all fields of control including linear control, nonlinear control, digital control, optimal control, etc. The book also discusses the main benefits attained due to the application of algorithms to analyze and control.
This volume comprises the latest developments in both fundamental science and patient-specific applications, discussing topics such as: cellular mechanics; injury biomechanics; biomechanics of heart and vascular system; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations. With contributions from researchers world-wide, the Computational Biomechanics for Medicine series of titles provides an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements.
China Satellite Navigation Conference (CSNC 2021) Proceedings presents selected research papers from CSNC 2021 held during 22nd-25th May, 2021 in Nanchang, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2021 which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications. |
You may like...
Facing up to AIDS - The Socio-Economic…
Sholto Cross, Alan Whiteside
Hardcover
R2,809
Discovery Miles 28 090
|