![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Industrial Process Identification brings together the latest advances in perturbation signal design. It describes the approaches to the design process that are relevant to industries. The authors' discussion of several software packages (Frequency Domain System Identification Toolbox, prs, GALOIS, multilev_new, and Input-Signal-Creator) will allow readers to understand the different designs in industries and begin designing common classes of signals. The authors include two case studies that provide a balance between the theory and practice of these designs: the identification of a direction-dependent electronic nose system; and the identification of a multivariable cooling system with time-varying delay. Major aspects of signal design such as the formulation of suitable specifications in the face of practical constraints, the classes of designs available, the various objectives necessitating separate treatments when dealing with nonlinear systems, and extension to multi-input scenarios, are discussed. Codes, including some that will produce simulated data, are included to help readers replicate the results described. Industrial Process Identification is a powerful source of information for control engineers working in the process and communications industries seeking guidance on choosing identification software tools for use in practical experiments and case studies. The book will also be of interest to academic researchers and students working in electrical, mechanical and communications engineering and the application of perturbation signal design. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book introduces a new set of orthogonal hybrid functions (HF) which approximates time functions in a piecewise linear manner which is very suitable for practical applications. The book presents an analysis of different systems namely, time-invariant system, time-varying system, multi-delay systems---both homogeneous and non-homogeneous type- and the solutions are obtained in the form of discrete samples. The book also investigates system identification problems for many of the above systems. The book is spread over 15 chapters and contains 180 black and white figures, 18 colour figures, 85 tables and 56 illustrative examples. MATLAB codes for many such examples are included at the end of the book.
This book contains papers on a wide range of topics in the area of kinematics, mechanisms, robotics, and design, addressing new research advances and innovations in design education. The content is divided into five main categories headed 'Historical Perspectives', 'Kinematics and Mechanisms', 'Robotic Systems', 'Legged Locomotion', and 'Design Engineering Education'. Contributions take the form of survey articles, historical perspectives, commentaries on trends on education or research, original research contributions, and papers on design education. This volume celebrates the achievements of Professor Kenneth Waldron who has made innumerable and invaluable contributions to these fields in the last fifty years. His leadership and his pioneering work have influenced thousands of people in this discipline.
This book presents the latest results in the field of dynamic decoupling of robot manipulators obtained in France, Russia, China and Austria. Manipulator dynamics can be highly coupled and nonlinear. The complicated dynamics result from varying inertia, interactions between the different joints, and nonlinear forces such as Coriolis and centrifugal forces. The dynamic decoupling of robot manipulators allows one to obtain a linear system, i.e. single-input and single output system with constant parameters. This simplifies the optimal control and accumulation of energy in manipulators. There are two ways to create the dynamically decoupled manipulators: via optimal mechanical design or control. This work emphasises mechatronic solutions. These will certainly improve the known design concepts permitting the dynamic decoupling of serial manipulators with a relatively small increase in total mass of the moving links taking into account the changing payload. For the first time such an approach has been applied on serial manipulators. Also of great interest is the dynamic decoupling control of parallel manipulators. Firstly, the dynamic model of redundant multi-axial vibration table with load has been established, and, secondly, its dynamic coupling characteristics have been analyzed. The discussed methods and applications of dynamic decoupling of robot manipulators are illustrated via CAD simulations and experimental tests.
This volume contains the Proceedings of the First International Conference of IFToMM Italy (IFIT2016), held at the University of Padova, Vicenza, Italy, on December 1-2, 2016. The book contains contributions on the latest advances on Mechanism and Machine Science. The fifty-nine papers deal with such topics as biomechanical engineering, history of mechanism and machine science, linkages and mechanical controls, multi-body dynamics, reliability, robotics and mechatronics, transportation machinery, tribology, and vibrations.
This thesis provides a systematic and integral answer to an open problem concerning the universality of dynamic fuzzy controllers. It presents a number of novel ideas and approaches to various issues including universal function approximation, universal fuzzy models, universal fuzzy stabilization controllers, and universal fuzzy integral sliding mode controllers. The proposed control design criteria can be conveniently verified using the MATLAB toolbox. Moreover, the thesis provides a new, easy-to-use form of fuzzy variable structure control. Emphasis is given to the point that, in the context of deterministic/stochastic systems in general, the authors are in fact discussing non-affine nonlinear systems using a class of generalized T-S fuzzy models, which offer considerable potential in a wide range of applications.
This book covers the state-of-the-art technologies in dynamic balancing of mechanisms with minimum increase of mass and inertia. The synthesis of parallel robots based on the Decomposition and Integration concept is also covered in detail. The latest advances are described, including different balancing principles, design of reactionless mechanisms with minimum increase of mass and inertia, and synthesizing parallel robots. This is an ideal book for mechanical engineering students and researchers who are interested in the dynamic balancing of mechanisms and synthesizing of parallel robots. This book also: * Broadens reader understanding of the synthesis of parallel robots based on the Decomposition and Integration concept * Reinforces basic principles with detailed coverage of different balancing principles, including input torque balancing mechanisms * Reviews exhaustively the key recent research into the design of reactionless mechanisms with minimum increase of mass and inertia, such as the design of reactionless mechanisms with auxiliary parallelograms, the design of reactionless mechanisms with flywheels, and the design of reactionless mechanisms by symmetrical structure design.
Cyber-physical systems (CPS) are characterized as a combination of physical (physical plant, process, network) and cyber (software, algorithm, computation) components whose operations are monitored, controlled, coordinated, and integrated by a computing and communicating core. The interaction between both physical and cyber components requires tools allowing analyzing and modeling both the discrete and continuous dynamics. Therefore, many CPS can be modeled as hybrid dynamic systems in order to take into account both discrete and continuous behaviors as well as the interactions between them. Guaranteeing the security and safety of CPS is a challenging task because of the inherent interconnected and heterogeneous combination of behaviors (cyber/physical, discrete/continuous) in these systems. This book presents recent and advanced approaches and tech-niques that address the complex problem of analyzing the diagnosability property of cyber physical systems and ensuring their security and safety against faults and attacks. The CPS are modeled as hybrid dynamic systems using different model-based and data-driven approaches in different application domains (electric transmission networks, wireless communication networks, intrusions in industrial control systems, intrusions in production systems, wind farms etc.). These approaches handle the problem of ensuring the security of CPS in presence of attacks and verifying their diagnosability in presence of different kinds of uncertainty (uncertainty related to the event occurrences, to their order of occurrence, to their value etc.).
This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata.The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solve the good parameters problem for parametric timed automata by computing a behavioral cartography of the system. Different extensions are proposed particularly for hybrid systems and applications to scheduling problems using timed automata with stopwatches. Various examples, both from the literature and industry, illustrate the techniques throughout the book.Various parametric verifications are performed, in particular of abstractions of a memory circuit sold by the chipset manufacturer ST-Microelectronics, as well as of the prospective flight control system of the next generation of spacecraft designed by ASTRIUM Space Transportation. Contents: 1. Parametric Timed Automata.2. The Inverse Method for Parametric Timed Automata.3. The Inverse Method in Practice: Application to Case Studies.4. Behavioral Cartography of Timed Automata.5. Parameter Synthesis for Hybrid Automata.6. Application to the Robustness Analysis of Scheduling Problems.7. Conclusion and Perspectives. About the Authors etienne Andre is Associate Professor in the Laboratoire d'Informatique de Paris Nord, in the University of Paris 13 (Sorbonne Paris Cite) in France. His current research interests focus on the verification of real-time systems.Romain Soulat is currently completing his PhD at the LSV laboratory at ENS-Cachan in France, focusing on the modeling and verification of hybrid temporal systems.
"Equitable Solutions for Retaining a Robust STEM Workforce" offers strategies and proven recommendations to accommodate work/life satisfaction for those in the STEM fields. Using real-life case studies, this book discusses universal issues such as dual careers and strategic decision making, childcare/dependent care in professional contexts, promoting family-friendly policies, as well as mentoring and networking. "Equitable Solutions for Retaining a Robust STEM Workforce"
provides data and tools to drive successful programs relaying
proactive solutions that STEM employers, academic institutions,
policy-makers, and individuals can utilize.
This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.
In this monograph the authors solve the modern scientific problems connected with A.C. motors and generators, based first on the detailed consideration of their physical phenomena. The authors describe the theory and investigative methods they developed and applied in practice, which are considered to be of essential interest for specialists in the field of the electrical engineering industry in European countries, the USA, Argentina, and Brazil, as well as in such countries as India, China, and Iran. This book will be of interest to engineers specialized in the field of the manufacture, operation, and repair of A.C. machines (motors and generators) as well as electric drives; to professors, lecturers, and post-graduate students of technical universities, who are specializing in the field of electric machine engineering and electric drives; and to students who are engaged in the field of high current techniques, electric drives, and electric machine engineering.
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
This book presents approaches to address key challenges based on a vehicle level view and with a special emphasis on Drive-by-Wire systems. The design and testing of modern vehicle electronics are becoming more and more demanding due to increasing interdependencies among components and the safety criticality of tasks. The development towards Drive-by-Wire functionalities in vehicles with multiple actuators for vehicle control further increases the challenge. The book explicitly takes into account the interactions between components and aims at bridging the gap between the need to generate additional customer benefits and the effort to achieve functional safety. The book follows a twofold approach: on the one side, it presents a toolchain to support efficient further development of novel functionalities for Drive-by-Wire vehicles. The toolchain comprises appropriate software tools and scaled and full-scale experimental vehicles. On the other side, development towards functionally safe and flexible Drive-by-Wire vehicles is addressed by proposing a top-down designed architecture for vehicle electronics that is enabled by suitable mechanisms. The resulting goal achievement with regard to functional safety is evaluated based on a novel hierarchical approach.
This volume presents the outcome of the second forum to cable-driven parallel robots, bringing the cable robot community together. It shows the new ideas of the active researchers developing cable-driven robots. The book presents the state of the art, including both summarizing contributions as well as latest research and future options. The book cover all topics which are essential for cable-driven robots: Classification Kinematics, Workspace and Singularity Analysis Statics and Dynamics Cable Modeling Control and Calibration Design Methodology Hardware Development Experimental Evaluation Prototypes, Application Reports and new Application concepts.
The International Symposium on Experimental Robotics (ISER) is a series of bi-annual meetings which are organized in a rotating fashion around North America, Europe and Asia/Oceania. The goal of ISER is to provide a forum for research in robotics that focuses on novelty of theoretical contributions validated by experimental results. The meetings are conceived to bring together, in a small group setting, researchers from around the world who are in the forefront of experimental robotics research. This unique reference presents the latest advances across the various fields of robotics, with ideas that are not only conceived conceptually but also explored experimentally. It collects robotics contributions on the current developments and new directions in the field of experimental robotics, which are based on the papers presented at the 14th ISER held on June 15-18, 2014 in Marrakech and Essaouira, Morocco. This present fourteenth edition of Experimental Robotics edited by M. Ani Hsieh, Oussama Khatib, and Vijay Kumar offers a collection of a broad range of topics in field and human-ce ntered robotics.
Systems with mechanical degrees of freedom containing unstable objects are analysed in this monograph and algorithms for their control are developed, discussed, and numerically tested. This is achieved by identifying unstable modes of motion and using all available resources to suppress them. By using this approach the region of states from which a stable regime can be reached is maximised. The systems discussed in this book are models for pendula and vehicles and find applications in mechatronics, robotics as well as in mechanical and automotive engineering.
This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry.
This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor. skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author s doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award."
"Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms" provides a complete analytical approach to the invention of new robot mechanisms and the analysis of existing designs based on a unified mathematical description of the kinematic and geometric constraints of mechanisms. Beginning with a high level introduction to mechanisms and
components, the book moves on to present a new analytical theory of
terminal constraints for use in the development of new spatial
mechanisms and structures. It clearly describes the application of
screw theory to kinematic problems and provides tools that
students, engineers and researchers can use for investigation of
critical factors such as workspace, dexterity and
singularity.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 4th International Conference on Cable-Driven Parallel Robots (CableCon 2019), held in Krakow, Poland on June 30-July 4, 2019, as part of the 5th IFToMM World Congress. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This book describes how the principle of self-sufficiency can be applied to a reconfigurable modular robotic organism. It shows the design considerations for a novel REPLICATOR robotic platform, both hardware and software, featuring the behavioral characteristics of social insect colonies. Following a comprehensive overview of some of the bio-inspired techniques already available, and of the state-of-the-art in re-configurable modular robotic systems, the book presents a novel power management system with fault-tolerant energy sharing, as well as its implementation in the REPLICATOR robotic modules. In addition, the book discusses, for the first time, the concept of "artificial energy homeostasis" in the context of a modular robotic organism, and shows its verification on a custom-designed simulation framework in different dynamic power distribution and fault tolerance scenarios. This book offers an ideal reference guide for both hardware engineers and software developers involved in the design and implementation of autonomous robotic systems.
This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.
This book contains mainly the selected papers of the First International Workshop on Medical and Service Robots, held in Cluj-Napoca, Romania, in 2012. The high quality of the scientific contributions is the result of a rigorous selection and improvement based on the participants exchange of opinions and extensive peer-review. This process has led to the publishing of the present collection of 16 independent valuable contributions and points of view and not as standard symposium or conference proceedings. The addressed issues are: Computational Kinematics, Mechanism Design, Linkages and Manipulators, Mechanisms for Biomechanics, Mechanics of Robots, Control Issues for Mechanical Systems, Novel Designs, Teaching Methods, all of these being concentrated around robotic systems for medical and service applications. The results are of interest to researchers and professional practitioners as well as to Ph.D. students in the field of mechanical and electrical engineering. This volume marks the start of a subseries entitled New Trends in Medical and Service Robots within the "Machine and Mechanism Science Series," presenting recent trends, research results and new challenges in the field of medical and service robotics. "
Mismatch or best match? This book demonstrates that best matching of individual entities to each other is essential to ensure smooth conduct and successful competitiveness in any distributed system, natural and artificial. Interactions must be optimized through best matching in planning and scheduling, enterprise network design, transportation and construction planning, recruitment, problem solving, selective assembly, team formation, sensor network design, and more. Fundamentals of best matching in distributed and collaborative systems are explained by providing: Methodical analysis of various multidimensional best matching processes Comprehensive taxonomy, comparing different best matching problems and processes Systematic identification of systems' hierarchy, nature of interactions, and distribution of decision-making and control functions Practical formulation of solutions based on a library of best matching algorithms and protocols, ready for direct applications and apps development. Designed for both academics and practitioners, oriented to systems engineers and applied operations researchers, diverse types of best matching processes are explained in production, manufacturing, business and service, based on a new reference model developed at Purdue University PRISM Center: "The PRISM Taxonomy of Best Matching". The book concludes with major challenges and guidelines for future basic and applied research in the area of best matching. |
You may like...
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Robotics for Cell Manipulation and…
Changsheng Dai, Guanqiao Shan, …
Paperback
R2,951
Discovery Miles 29 510
|